MATH 960: PROJECT V
 DUE: MAY $11^{\text {th }}$

(1) Let $K: X \rightarrow Y$ be compact and $x_{n} \rightarrow x$ weakly in X. Prove that $\lim _{n}\left\|K x_{n}-K x\right\|=$ 0.
(2) Let X be a separable reflexive Banach space, Y is a Banach space and $K: X \rightarrow$ Y be a linear operator, so that whenever $x_{n} \rightarrow x$ weakly, then $K x_{n}$ converges strongly. Prove that $K: X \rightarrow Y$ is compact (and then it follows that $K x_{n} \rightarrow K x$ by the previous problem).
(3) Let $K:[0,1] \times[0,1] \rightarrow \mathscr{C}$ be so that $\int_{0}^{1} \int_{0}^{1}|K(s, t)|^{2} d s d t<\infty$ and $\overline{K(s, t)}=K(t, s)$. Show that the corresponding Hilbert-Schmidt operator $T_{K}: L^{2}[0,1] \rightarrow L^{2}[0,1]$

$$
T_{K} f(t)=\int_{0}^{1} K(s, t) f(s) d s
$$

is self-adjoint. In addition, prove that its eigenvalues and eigenvectors λ_{j}, x_{j} : $T_{K} x_{j}=\lambda_{j} x_{j},\left\|x_{j}\right\|=1$ satisfy

$$
K(s, t)=\sum_{j} \lambda_{j} \overline{x_{j}(s)} x_{j}(t) .
$$

(4) Let $T: H \rightarrow H$ be self-adjoint operator on the Hilbert space $H, T \geq 0$ and T^{2} is compact. Prove that T is compact as well.
Hint: Use that for $Q=T^{2}$, there is a complete orthonormal basis $\left\{x_{n}\right\}$ and eigenvalues $\lambda_{n} \geq 0$ (why?), so that

$$
Q x=\sum_{n=1}^{\infty} \lambda_{n}\left\langle x, x_{n}\right\rangle x_{n} .
$$

Then, show that $T x=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \sqrt{\lambda_{n}}\left\langle x, x_{n}\right\rangle x_{n}$, where the limit is to be understood in the operator norm.
(5) (J .L. Lions lemma) Let $X \subset Y \subset Z$ are three Banach spaces, so that $i: X \rightarrow$ $Y, i(x)=x$ is compact and $j: Y \rightarrow Z, j(y)=y$ is continuous. Prove that for every $\epsilon>0$, there exists C_{ϵ}, so that for every $u \in X$,

$$
\|u\|_{Y} \leq \epsilon\|u\|_{X}+C_{\epsilon}\|u\|_{Z}
$$

Hint: Argue by contradiction. That is, there exists $\epsilon_{0}>0$, so that for all n, there is $x_{n} \in X$, so that

$$
\left\|x_{n}\right\|_{Y} \geq \epsilon_{0}\left\|x_{n}\right\|_{X}+n\left\|x_{n}\right\|_{Z}
$$

Consider $y_{n}:=\frac{x_{n}}{\left\|x_{n}\right\|_{X}}$.
(6) Prove that for every $\epsilon>0$, there is C_{ϵ}, so that

$$
\max _{x \in[0,1]}|u(x)| \leq \epsilon \max _{x \in[0,1]}\left|u^{\prime}(x)\right|+C_{\epsilon}\|u\|_{L^{1}[0,1]}
$$

Hint: Use J.L. Lions lemma. You have to note in advance that

$$
C^{1}[0,1]=\left\{f:[0,1] \rightarrow \mathscr{C}: f, f^{\prime} \in C[0,1]\right\} ;\|f\|_{C^{1}[0,1]}=\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|+\sup _{x \in[0,1]}|f(x)| .
$$

is compactly embedded in $C[0,1]$ (by Arzela-Ascoli, why?)
(7) Let $T: H \rightarrow H$ is self-adjoint. Prove that $\lambda \in \rho(T)$ (i.e. $\lambda I-T$) is invertible) if and only if there exist ${ }^{1}$ closed subspaces H_{1}, H_{2}, so that H_{1}, H_{2} are T invariant, with $H=H_{1} \oplus H_{2}$, so that

$$
\sup _{\|x\|=1, x \in H_{1}}\langle T x, x\rangle<\lambda<\inf _{\|y\|=1, y \in H_{2}}\langle T y, y\rangle
$$

Hint: For the sufficiency, use that $\sigma(T)=\sigma\left(T_{1}\right) \cup \sigma\left(T_{2}\right)$, where $T_{j}=\left.T\right|_{H_{j}}$. For the necessity, consider a continuous function,

$$
f_{1}(x)= \begin{cases}1 & x<\lambda-\epsilon \\ 0 & x>\lambda+\epsilon\end{cases}
$$

and $f_{2}(x)=1-f_{1}(x)$. Note $f_{1}, f_{2} \in C(\sigma(T)): f_{j}^{2}(x)=f_{j}(x), x \in \sigma(T)$ for $0<\epsilon \ll 1$. Take the projections $P_{j}=f_{j}(T)$ and

$$
H_{j}:=P_{j}[H] .
$$

Alternatively, for the necessity, we might show that $(T-\lambda I)$ is invertible on H_{1} and on H_{2} by using the result stating that $\sigma(M) \subset\left[\inf _{\|x\|=1}\langle M x, x\rangle, \sup _{\|x\|=1}\langle M x, x\rangle\right]$

[^0]
[^0]: ${ }^{1}$ It is allowed that $H_{1}=\varnothing$ or $H_{2}=\varnothing$

