## MATH 960: PROJECT IV

## DUE: APRIL $27^{\text {th }}$

(1) Let $(\mathscr{A},\|\cdot\|)$ be a Banach space, with a product operation $(x, y) \rightarrow x . y$ that satisfies all the standard distribubutive, associativity laws etc. In addition, assume that $||x| \|$

$$
\|x y\| \leq M\|x\|\|y\|,
$$

for all $x, y \in \mathscr{A}$ and for some $M>1$. Assume that $\mathscr{A}$ has an unit element $e$ : $\|e\|=1$. Prove that $\mathscr{A}$ is a Banach algebra. In other words, show that there is an equivalent norm $\|\|\cdot\|$, so that

$$
\|x y\| \leq\|x\|\| \| y \|
$$

Hint: Try

$$
\|x\|=\sup _{y \neq 0, y \in \mathscr{A}} \frac{\|x y\|}{\|y\|} .
$$

## Solution:

For $\|\mid x\|$, we clearly have $\||a x\|=|a|\| x\|\|$ and $\| x\|\|=0$ if and only if $x=0$. Next, by the triangle inequality for $\|\cdot\|$,

$$
\left\|x_{1}+x_{2}\right\|\left\|=\sup _{y \neq 0, y \in \mathscr{A}} \frac{\left\|\left(x_{1}+x_{2}\right) y\right\|}{\|y\|} \leq \sup _{y \neq 0, y \in \mathscr{A}} \frac{\left\|x_{1} y\right\|}{\|y\|}+\sup _{y \neq 0, y \in \mathscr{A}} \frac{\left\|x_{2} y\right\|}{\|y\|}=\right\| x_{1}\|+\| x_{2} \|
$$

Note that the definition of $\||\cdot|| |$ can be interpreted in the form

$$
\|x\|=\sup _{z \neq 0, z \in \mathscr{A}:\|z\|=1}\|x z\| .
$$

So,

$$
\begin{aligned}
\left\|x_{1} x_{2}\right\| & =\sup _{z \neq 0, z \in \mathscr{A}:\|z\|=1}\left\|x_{1} x_{2} z\right\|=\sup _{z \neq 0, z \in \mathscr{A}:\|z\|=1} \frac{\left\|x_{1}\left(x_{2} z\right)\right\|}{\left\|x_{2} z\right\|}\left\|x_{2} z\right\| \leq \\
& \leq \sup _{z \neq 0, z \in \mathscr{A}:\|z\|=1} \frac{\left\|x_{1}\left(x_{2} z\right)\right\|}{\left\|x_{2} z\right\|} \sup _{z \neq 0, z \in \mathscr{A}:\|z\|=1}\left\|x_{2} z\right\| \leq\left\|x_{1}\right\|\| \| x_{2} \| .
\end{aligned}
$$

Finally,

$$
\|x\|=\frac{\|x e\|}{\|e\|} \leq\|x\| \leq M\|x\|,
$$

so it is equivalent norm.
(2) Let $\mathscr{A}$ be an unital Banach algebra, not necessarily commutative. Let $M \in \mathscr{A}$ be an element, that satisfies $p(M)=0$ for some polynomial $p$. Assume that this polynomial is of minimal degree, i.e. for any polynomial $q: \operatorname{deg}(q)<\operatorname{deg}(p)$, we have that $q(M) \neq 0$. Prove that

$$
\sigma(M)=\{\lambda \in \mathscr{C}: p(\lambda)=0\} .
$$

Solution: By the spectral mapping theorem, $\sigma(p(M))=p(\sigma(M))$, whence $p(\sigma(M))=$ $\sigma(p(M))=\sigma(0)=\{0\}$.

$$
\sigma(M) \subset\{\lambda \in \mathscr{C}: p(\lambda)=0\} .
$$

To show the equality, assume for a contradiction that that $\lambda_{0}: p\left(\lambda_{0}\right)=0$, but $\lambda_{0} \notin \sigma(M)$. Then, there is a polynomial $q: \operatorname{deg}(q)=\operatorname{deg}(p)-1$, so that

$$
p(\lambda)=\left(\lambda-\lambda_{0}\right) q(\lambda)
$$

Thus,

$$
q(M)\left(M-\lambda_{0} I\right)=p(M)=0
$$

Since $\left(M-\lambda_{0} I\right)$ is invertible, apply $\left(M-\lambda_{0} I\right)^{-1}$ to the previous identity. It follows that $q(M)=0$, a contradiction with the minimality of $p$.
(3) Extend the previous result to analytic functions $p$. More precisely, let there be an analytic function $g \in H(\Omega)$, so that $g(M)=0$, where $\Omega$ is an open set containing $\sigma(M)$. Consider the set

$$
H_{M}=\{G \in H(\Omega): G(M)=0\},
$$

and introduce an order relation $G_{1} \leq G_{2}$, if $G_{2} / G_{1} \in H(\Omega)$. Let $p$ be a minimal element with respect to this order in $H_{M}$. Prove that

$$
\sigma(M)=\{\lambda \in \mathscr{C}: p(\lambda)=0\} .
$$

## Solution:

Similar to the previous one, by the spectral mapping theorem,

$$
\sigma(M) \subset\{\lambda \in \mathscr{C}: p(\lambda)=0\}
$$

Assume for a contradiction that that $\lambda_{0}: p\left(\lambda_{0}\right)=0$, but $\lambda_{0} \notin \sigma(M)$. Again, there is a $q \in H(\Omega)$, so that $p(\lambda)=\left(\lambda-\lambda_{0}\right) q(\lambda)$, namely

$$
q(\lambda)=\left\{\begin{array}{cc}
\frac{p(\lambda)-p\left(\lambda_{0}\right)}{\lambda-\lambda_{0}} & \lambda \neq \lambda_{0}, \lambda \in \Omega \\
p^{\prime}\left(\lambda_{0}\right) & \lambda=\lambda_{0}
\end{array}\right.
$$

This is indeed an analytic function by Riemann removable singularity theorem. Again

$$
q(M)\left(M-\lambda_{0} I\right)=p(M)=0
$$

implying $q(M)=0$, since $\lambda_{0} \notin \sigma(M)$. But clearly $\frac{p}{q}=\lambda-\lambda_{0} \in H(\Omega)$, whence $q \leq p$, a contradiction with the minimality of $p$.
(4) Find the spectrum of the operator $T: l^{p} \rightarrow l^{p}, 1 \leq p \leq \infty$

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)
$$

## Solution:

We can apply the previous result since $I+T^{2}=0$, whence

$$
\sigma(T)=\left\{z: z^{2}+1=0\right\}
$$

whence $z= \pm i$.
(5) Show that if in a Banach algebra $A$, we have $\|y\|_{A}=|\sigma(y)|$, for every $y \in A$, then $A$ is commutative.
Hint: This is the reverse of one of the theorems that we have established in class (in the $C^{*}$ context).
Follow the following steps:

- Show that for every $w \in A$ invertible, $\sigma\left(w^{-1} x w\right)=\sigma(x)$. This is true in general and does not use $\|x\|_{A}=|\sigma(x)|$.
- Conclude that $\|x\|_{A}=\left\|w^{-1} x w\right\|_{A}$.
- Use the previous step for $w=e^{\lambda x}$ for $\lambda \in C$ in conjunction with the Liouville's theorem ("every bounded entire function is a constant") to conclude

$$
e^{\lambda x} y=y e^{\lambda x}
$$

- Compare the coefficients in the previous identity.


## Solution:

We have for every $\lambda \in \mathscr{C}$,

$$
w^{-1} x w-\lambda e=w^{-1}(x-\lambda e) w
$$

Thus, $w^{-1} x w-\lambda e$ is invertible, if $x-\lambda e$ is invertible and vice versa. Thus $\rho\left(w^{-1} x w\right)=$ $\rho(x)$, and hence $\sigma\left(w^{-1} x w\right)=\sigma(x)$. Thus,

$$
\|x\|=|\sigma(x)|=\left|\sigma\left(w^{-1} x w\right)\right|=\left\|w^{-1} x w\right\| .
$$

Hence the $A$ valued entire function $\lambda \rightarrow e^{-\lambda y} x e^{\lambda y}$ satisfies

$$
\left\|e^{-\lambda y} x e^{\lambda y}\right\|=\|x\| .
$$

By Lioville's theorem, it is bounded - one could argue that for every element $l \in$ $A^{*}, f(\lambda)=l\left(e^{-\lambda y} x e^{\lambda y}\right)$ is a bounded entire function and hence constant. Thus, $f(\lambda)=f(0)=l(x)$. It follows that

$$
l\left(e^{-\lambda y} x e^{\lambda y}-x\right)=0
$$

By Hahn-Banach $\left(l \in A^{*}\right.$ separate the points in $\left.A\right), e^{-\lambda y} x e^{\lambda y}-x=0$ or $e^{\lambda y} x=$ $x e^{\lambda y}$. Taking a derivative at zero at the last identity reveals that $x y=y x$.
(6) Suppose that in a Banach algebra, $\|x y\| \leq M\|y x\|$ for some constant $M$. Prove that $A$ is commutative.

## Solution:

The problem here is the same. Indeed, setting $y=e^{\lambda u}, x=e^{-\lambda u} \nu$, for arbitrary $u, v \in A$ and $\lambda \in \mathscr{C}$, yields

$$
\left\|e^{-\lambda u} v e^{\lambda u}\right\| \leq M\|v\| .
$$

As in the previous problem, this implies $e^{\lambda u} v=v e^{\lambda u}$, whence $u v=v u$.
(7) Let $\{\mathscr{A}\}$ be a $C^{*}$ algebra and $x=x^{*}$. Prove that at least one of the reals $\|x\|,-\|x\|$ belong to $\sigma(x)$.

## Solution:

Since $x=x^{*}, \sigma(x) \subset \mathbf{R}$ and $|\sigma(x)|=\|x\|$. Now, there is a sequence $\lambda_{n} \in \sigma(x)$, so that $\left|\lambda_{n}\right| \rightarrow|\sigma(x)|=\|x\|$. Since $\lambda_{n}$ are real, it follows that a subsequence goes to either $-\|x\|$ or $\|x\|$ (or both). Say $\lambda_{n_{k}} \rightarrow\|x\|$. Since $\sigma(x)$ is closed, it follows that $\|x\|=\lim _{k} \lambda_{n_{k}}$ also belongs to $\sigma(x)$. Similar for the other case, $\lambda_{n_{k}} \rightarrow-\|x\|$.
(8) For a sequence of weights, $\left(w_{n}\right)_{n=-\infty}^{\infty}$ satisfying $w_{0}=1,0<w_{m+n} \leq w_{m} w_{n}$, define the space of complex sequences,

$$
A=\left\{\left(f_{n}\right)_{n}\|f\|_{A}=\sum_{n}\left|f_{n}\right| w_{n}\right\}
$$

Show that the product operation

$$
(f * g)_{n}=\sum_{k=-\infty}^{\infty} f_{n-k} g_{k}
$$

turns $A$ into a commutative Banach algebra. For the sequence $\left(w_{n}\right)$ via $w_{n}=$ $2^{n}, n \geq 0$ and $w_{n}=1, n<0$, identify the multiplicative linear functionals on $A$ and compute the spectrum for each element of $A$.
Hint: It is good to think again

$$
A=\left\{f:[0,1] \rightarrow \mathscr{C}: f=\sum_{n} f_{n} e^{2 \pi i n x},\|f\|_{A}=\sum_{n}\left|f_{n}\right| w_{n}<\infty\right\}
$$

with point-wise multiplication for the functions. Your answer should contain the term Laurent series.

## Solution:

We have that

$$
(f * g)_{n}=\sum_{k=-\infty}^{\infty} f_{n-k} g_{k}=\sum_{l=-\infty}^{\infty} f_{l} g_{n-l}=(g * f)_{n}
$$

The triangle inequality and the homogeneity of the norm are obvious. The product inequality goes as follows

$$
\begin{aligned}
\|f * g\|_{A} & =\sum_{n}\left|(f * g)_{n}\right| w_{n} \leq \sum_{n}\left|\sum_{k=-\infty}^{\infty} f_{n-k} g_{k}\right| w_{n} \leq \sum_{n} \sum_{k=-\infty}^{\infty}\left|f_{n-k} \| g_{k}\right| w_{n} \\
& \leq \sum_{n} \sum_{k=-\infty}^{\infty}\left|f_{n-k}\left\|g_{k}\left|w_{n-k} w_{k}=\sum_{l}\right| f_{l}\left|w_{l} \sum_{k}\right| g_{k} \mid w_{k}=\right\| f\left\|_{A}\right\| g \|_{A}\right.
\end{aligned}
$$

Regarding the multiplicative linear functionals, introduce

$$
\lambda=p\left(e^{2 \pi i x}\right),
$$

so that $\lambda^{n}=p\left(e^{2 \pi i n x}\right)$. Thus, $\lambda$ needs to satisfy

$$
|\lambda|^{n}=\left|p\left(e^{2 \pi i n x}\right)\right| \leq\left\|e^{2 \pi i n x}\right\|_{A}=w_{n}
$$

Thus, $|\lambda| \leq \inf _{n}\left|w_{n}\right|^{1 / n}$ for $n>0$ and $|\lambda| \geq \sup _{n>0} \frac{1}{w_{-n}^{1 / n}}$. For the example that we are considering, this amount to the following necessary conditions for $\lambda$ :

$$
1 \leq|\lambda| \leq 2
$$

On the other hand, these conditions are also sufficient, since the expression

$$
\sum_{n=-\infty}^{\infty} f_{n} \lambda^{n}
$$

converges for $\left(f_{n}\right) \in A, \lambda: 1 \leq|\lambda| \leq 2$. This is the Laurent series with coefficients provided by $f_{n}$. Thus, all m.l.f. on $A$ are given by

$$
p_{\lambda}(f)=\sum_{n=-\infty}^{\infty} f_{n} \lambda^{n}
$$

where $\lambda: 1 \leq|\lambda| \leq 2$. Thus,

$$
\sigma\left(\left(f_{n}\right)_{n}\right)=\left\{p_{\lambda}(f):|\lambda| \in[1,2]\right\}=\left\{\sum_{n=-\infty}^{\infty} f_{n} \lambda^{n},|\lambda| \in[1,2]\right\}
$$

(9) Let $\{\mathscr{A}\}$ be a Banach algebra and denote by $\rho_{\mathscr{A}}$ the (open) set of its invertible elements. Let $x \in \partial \rho_{\mathscr{A}}$, the boundary of $\rho_{\mathscr{A}}$ and $x_{n} \in \rho_{\mathscr{A}}, x_{n} \rightarrow x$. Prove that $\left\|x_{n}^{-1}\right\| \rightarrow \infty$.
Hint: Argue by contradiction - show that $x$ is invertible, by considering the element $e-x_{n}^{-1} x=x_{n}^{-1}\left(x_{n}-x\right)$. Clearly $x$ cannot be invertible (why?).

## Solution:

Assume for a contradiction that for some subsequence, $\left\|x_{n_{k}}^{-1}\right\| \leq M$. Then, since

$$
\left\|x_{n_{k}}^{-1}\left(x_{n_{k}}-x\right)\right\| \leq M\left\|x_{n_{k}}-x\right\| \rightarrow 0,
$$

as $k \rightarrow \infty$, it will follow that

$$
\left\|e-x_{n_{k}}^{-1} x\right\| \rightarrow 0
$$

and hence $\left\|e-x_{n_{k}}^{-1} x\right\|<\frac{1}{2}$ for all large enough $k$. Thus,

$$
x_{n_{k}}^{-1} x=e-\left(e-x_{n_{k}}^{-1} x\right),
$$

will be invertible by the von Neumann series, whence $x=x_{n_{k}}\left(x_{n_{k}}^{-1} x\right)$ is invertible as well. However, the sets of invertible elements form an open set and in particular an invertible element has a whole neighborhood around it, composed of invertible elements. Thus $x$ cannot be on the boundary $\partial \rho_{\mathscr{A}}$ (since each neighborhood will contain non-invertible elements), a contradiction. In fact, from the argument above, we may derive the quantitative statement, namely for every invertible element $x \in \mathscr{A}$, one has

$$
\left\|x^{-1}\right\| \geq \frac{1}{\operatorname{dist}\left(x, \partial \rho_{\mathscr{A}}\right)} .
$$

In the situation above

$$
\left\|x_{n}^{-1}\right\| \geq \frac{1}{\left\|x_{n}-x\right\|}
$$

