
MATH 960: PROJECT IV
DUE: APRIL 27th

(1) Let (A ,‖ · ‖) be a Banach space, with a product operation (x, y) → x.y that sat-
isfies all the standard distribubutive, associativity laws etc. In addition, assume
that �x�

‖x y‖ ≤ M‖x‖‖y‖,

for all x, y ∈ A and for some M > 1. Assume that A has an unit element e :
‖e‖ = 1. Prove that A is a Banach algebra. In other words, show that there is an
equivalent norm � ·�, so that

�x y�≤�x��y�
Hint: Try

�x�= sup
y 6=0,y∈A

‖x y‖
‖y‖ .

Solution:
For �x�, we clearly have �ax�= |a|�x� and �x�= 0 if and only if x = 0. Next, by
the triangle inequality for ‖ ·‖,

�x1 +x2�= sup
y 6=0,y∈A

‖(x1 +x2)y‖
‖y‖ ≤ sup

y 6=0,y∈A

‖x1 y‖
‖y‖ + sup

y 6=0,y∈A

‖x2 y‖
‖y‖ = �x1�+�x2�

Note that the definition of � ·� can be interpreted in the form

�x�= sup
z 6=0,z∈A :‖z‖=1

‖xz‖.

So,

�x1x2� = sup
z 6=0,z∈A :‖z‖=1

‖x1x2z‖ = sup
z 6=0,z∈A :‖z‖=1

‖x1(x2z)‖
‖x2z‖ ‖x2z‖ ≤

≤ sup
z 6=0,z∈A :‖z‖=1

‖x1(x2z)‖
‖x2z‖ sup

z 6=0,z∈A :‖z‖=1
‖x2z‖ ≤ �x1��x2�.

Finally,

‖x‖ = ‖xe‖
‖e‖ ≤ �x�≤ M‖x‖,

so it is equivalent norm.
(2) Let A be an unital Banach algebra, not necessarily commutative. Let M ∈ A

be an element, that satisfies p(M) = 0 for some polynomial p. Assume that this
polynomial is of minimal degree, i.e. for any polynomial q : deg (q) < deg (p), we
have that q(M) 6= 0. Prove that

σ(M) = {λ ∈C : p(λ) = 0}.
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Solution: By the spectral mapping theorem,σ(p(M)) = p(σ(M)), whence p(σ(M)) =
σ(p(M)) =σ(0) = {0}.

σ(M) ⊂ {λ ∈C : p(λ) = 0}.

To show the equality, assume for a contradiction that that λ0 : p(λ0) = 0, but
λ0 ∉σ(M). Then, there is a polynomial q : deg (q) = deg (p)−1, so that

p(λ) = (λ−λ0)q(λ).

Thus,

q(M)(M −λ0I ) = p(M) = 0

Since (M−λ0I ) is invertible, apply (M−λ0I )−1 to the previous identity. It follows
that q(M) = 0, a contradiction with the minimality of p.

(3) Extend the previous result to analytic functions p. More precisely, let there be an
analytic function g ∈ H(Ω), so that g (M) = 0, where Ω is an open set containing
σ(M). Consider the set

HM = {G ∈ H(Ω) : G(M) = 0},

and introduce an order relation G1 ¹ G2, if G2/G1 ∈ H(Ω). Let p be a minimal
element with respect to this order in HM . Prove that

σ(M) = {λ ∈C : p(λ) = 0}.

Solution:
Similar to the previous one, by the spectral mapping theorem,

σ(M) ⊂ {λ ∈C : p(λ) = 0}.

Assume for a contradiction that that λ0 : p(λ0) = 0, but λ0 ∉σ(M). Again, there is
a q ∈ H(Ω), so that p(λ) = (λ−λ0)q(λ), namely

q(λ) =
{

p(λ)−p(λ0)
λ−λ0

λ 6=λ0,λ ∈Ω
p ′(λ0) λ=λ0

This is indeed an analytic function by Riemann removable singularity theorem.
Again

q(M)(M −λ0I ) = p(M) = 0

implying q(M) = 0, sinceλ0 ∉σ(M). But clearly p
q =λ−λ0 ∈ H(Ω), whence q ¹ p,

a contradiction with the minimality of p.
(4) Find the spectrum of the operator T : l p → l p , 1 ≤ p ≤∞

T (x1, x2, x3, x4, . . .) = (−x2, x1,−x4, x3, . . .).

Solution:
We can apply the previous result since I +T 2 = 0, whence

σ(T ) = {z : z2 +1 = 0},

whence z =±i .
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(5) Show that if in a Banach algebra A, we have
∥∥y

∥∥
A = |σ(y)|, for every y ∈ A, then

A is commutative.
Hint: This is the reverse of one of the theorems that we have established in class
(in the C∗ context).
Follow the following steps:

• Show that for every w ∈ A invertible, σ(w−1xw) =σ(x). This is true in gen-
eral and does not use ‖x‖A = |σ(x)|.

• Conclude that ‖x‖A = ∥∥w−1xw
∥∥

A.
• Use the previous step for w = eλx for λ ∈ C in conjunction with the Liou-

ville’s theorem (“every bounded entire function is a constant”) to conclude

eλx y = yeλx .

• Compare the coefficients in the previous identity.
Solution:
We have for every λ ∈C ,

w−1xw −λe = w−1(x −λe)w

Thus, w−1xw−λe is invertible, if x−λe is invertible and vice versa. Thusρ(w−1xw) =
ρ(x), and hence σ(w−1xw) =σ(x). Thus,

‖x‖ = |σ(x)| = |σ(w−1xw)| = ‖w−1xw‖.

Hence the A valued entire function λ→ e−λy xeλy satisfies

‖e−λy xeλy‖ = ‖x‖.

By Lioville’s theorem, it is bounded - one could argue that for every element l ∈
A∗, f (λ) = l (e−λy xeλy ) is a bounded entire function and hence constant. Thus,
f (λ) = f (0) = l (x). It follows that

l (e−λy xeλy −x) = 0.

By Hahn-Banach (l ∈ A∗ separate the points in A), e−λy xeλy − x = 0 or eλy x =
xeλy . Taking a derivative at zero at the last identity reveals that x y = y x.

(6) Suppose that in a Banach algebra,
∥∥x y

∥∥ ≤ M
∥∥y x

∥∥ for some constant M . Prove
that A is commutative.
Solution:
The problem here is the same. Indeed, setting y = eλu , x = e−λu v , for arbitrary
u, v ∈ A and λ ∈C , yields

‖e−λu veλu‖ ≤ M‖v‖.

As in the previous problem, this implies eλu v = veλu , whence uv = vu.
(7) Let {A } be a C∗ algebra and x = x∗. Prove that at least one of the reals ‖x‖, −‖x‖

belong to σ(x).
Solution:
Since x = x∗, σ(x) ⊂ R and |σ(x)| = ‖x‖. Now, there is a sequence λn ∈ σ(x), so
that |λn | → |σ(x)| = ‖x‖. Since λn are real, it follows that a subsequence goes to
either −‖x‖ or ‖x‖ (or both). Say λnk →‖x‖. Since σ(x) is closed, it follows that
‖x‖ = limk λnk also belongs to σ(x). Similar for the other case, λnk →−‖x‖.
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(8) For a sequence of weights, (wn)∞n=−∞ satisfying w0 = 1, 0 < wm+n ≤ wm wn , de-
fine the space of complex sequences,

A = {( fn)n
∥∥ f

∥∥
A =∑

n
| fn |wn}

Show that the product operation

( f ∗ g )n =
∞∑

k=−∞
fn−k gk ,

turns A into a commutative Banach algebra. For the sequence (wn) via wn =
2n ,n ≥ 0 and wn = 1,n < 0, identify the multiplicative linear functionals on A
and compute the spectrum for each element of A.
Hint: It is good to think again

A = { f : [0,1] →C : f =∑
n

fne2πi nx ,
∥∥ f

∥∥
A =∑

n
| fn |wn <∞}

with point-wise multiplication for the functions. Your answer should contain
the term Laurent series.
Solution:
We have that

( f ∗ g )n =
∞∑

k=−∞
fn−k gk =

∞∑
l=−∞

fl gn−l = (g ∗ f )n

The triangle inequality and the homogeneity of the norm are obvious. The prod-
uct inequality goes as follows

‖ f ∗ g‖A = ∑
n
|( f ∗ g )n |wn ≤∑

n
|

∞∑
k=−∞

fn−k gk |wn ≤∑
n

∞∑
k=−∞

| fn−k ||gk |wn

≤ ∑
n

∞∑
k=−∞

| fn−k ||gk |wn−k wk =∑
l
| fl |wl

∑
k
|gk |wk = ‖ f ‖A‖g‖A.

Regarding the multiplicative linear functionals, introduce

λ= p(e2πi x),

so that λn = p(e2πi nx). Thus, λ needs to satisfy

|λ|n = |p(e2πi nx)| ≤ ‖e2πi nx‖A = wn

Thus, |λ| ≤ infn |wn |1/n for n > 0 and |λ| ≥ supn>0
1

w1/n−n
. For the example that we

are considering, this amount to the following necessary conditions for λ:

1 ≤ |λ| ≤ 2.

On the other hand, these conditions are also sufficient, since the expression

∞∑
n=−∞

fnλ
n
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converges for ( fn) ∈ A, λ : 1 ≤ |λ| ≤ 2. This is the Laurent series with coefficients
provided by fn . Thus, all m.l.f. on A are given by

pλ( f ) =
∞∑

n=−∞
fnλ

n ,

where λ : 1 ≤ |λ| ≤ 2. Thus,

σ(( fn)n) = {pλ( f ) : |λ| ∈ [1,2]} = {
∞∑

n=−∞
fnλ

n , |λ| ∈ [1,2]}.

(9) Let {A } be a Banach algebra and denote by ρA the (open) set of its invertible
elements. Let x ∈ ∂ρA , the boundary of ρA and xn ∈ ρA , xn → x. Prove that
‖x−1

n ‖→∞.
Hint: Argue by contradiction - show that x is invertible, by considering the ele-
ment e −x−1

n x = x−1
n (xn −x). Clearly x cannot be invertible (why?).

Solution:
Assume for a contradiction that for some subsequence, ‖x−1

nk
‖ ≤ M . Then, since

‖x−1
nk

(xnk −x)‖ ≤ M‖xnk −x‖→ 0,

as k →∞, it will follow that

‖e −x−1
nk

x‖→ 0,

and hence ‖e −x−1
nk

x‖ < 1
2 for all large enough k. Thus,

x−1
nk

x = e − (e −x−1
nk

x),

will be invertible by the von Neumann series, whence x = xnk (x−1
nk

x) is invertible
as well. However, the sets of invertible elements form an open set and in par-
ticular an invertible element has a whole neighborhood around it, composed of
invertible elements. Thus x cannot be on the boundary ∂ρA (since each neigh-
borhood will contain non-invertible elements), a contradiction. In fact, from the
argument above, we may derive the quantitative statement, namely for every in-
vertible element x ∈A , one has

‖x−1‖ ≥ 1

di st (x,∂ρA )
.

In the situation above

‖x−1
n ‖ ≥ 1

‖xn −x‖ .


