MATH 960: PROJECT V DUE: WEDNESDAY, MAY $13^{\text {th }}, 2020$

(1) On the Banach space $l^{p}=\left\{\left(x_{n}\right)_{n=1}^{\infty}:\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\}, 1<p<\infty$, consider the left shift operator $S\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. Prove that

$$
P \sigma(S)=\{\lambda:|\lambda|<1\}, R \sigma(S)=\emptyset, C \sigma(S)=\{\lambda:|\lambda|=1\} .
$$

Hint: First show that $|\lambda|>1$ is in the resolvent set. Then, for each $|\lambda|<1$ construct eigenvectors. Finally, for each $\lambda:|\lambda|=1$, show that $\operatorname{Ker}(\lambda-S)=$ $\{0\}$. Then, solve the system $\lambda x_{1}-x_{2}=f_{1}, \ldots, \lambda x_{n}-x_{n+1}=f_{n}, \lambda x_{n+1}-x_{n+2}=$ $0, \ldots$ for each finitely supported $\left(f_{1}, f_{2}, \ldots, f_{n}, 0, \ldots\right)$ - take $x_{n+1}=x_{n+2}=$ $\ldots=0$ and solve backwards.
(2) Compute $\sigma(R)$ (with its components), where $R: l^{p} \rightarrow l^{p}, 1<p<\infty$ and $R\left(x_{1}, x_{2}, \ldots,\right)=\left(0, x_{1}, x_{2}, \ldots\right)$.
Hint: Use the previous exercise and Lemma 5.2.5/page 209.
(3) Let A be a bounded operator on a Banach space X, with $\sigma(A) \subset \mathbb{C} \backslash \mathbb{R}_{-}$or $\sigma(A) \cap\{\lambda \in \mathbb{R}: \lambda \leq 0\}=\emptyset$. Define the operator $B=\sqrt{A}$. Where does its spectrum lie? Prove that $B^{2}=A$.

Hint: You need a proper definition of (a branch of) the holomorphic function \sqrt{z}. Define it through $\ln (z)$ in $\mathbb{C} \backslash \mathbb{R}_{-}$.
(4) Exercise 5.2.15/page 221.
(5) Suppose that a matrix $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is idempotent, that is $A^{k}=0$ for some $k \geq 1$. Let $k_{0}=\min \left\{k: A^{k}=0\right\}$. Prove that $k_{0} \leq n$. Show that $\sigma(A)=\{0\}$.
(6) Consider the Volterra operator $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$, defined by

$$
T f(t)=\int_{0}^{t} f(s) d s
$$

Show that the adjoint is $T^{*} f(t)=\int_{t}^{1} f(s) d s$. Is T self-adjoint? Is T normal? Prove that the operator $P=T+T^{*}$ is a an orthogonal projection, i.e. $P=$ $P^{*}, P^{2}=P$. Characterize $\operatorname{Im}(P)$.
(7) Show that for each integer n (induction)

$$
T^{n} f(x)=\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n} f(s) d s .
$$

Prove that $r_{T}=0$, so $\sigma(T)=\{0\}$.
Hint: Estimate $\left\|T^{n}\right\|$ so that one can conclude that $\lim _{n}\left\|T^{n}\right\|^{\frac{1}{n}}=0$.
Bonus - 5 points: Try to find the inverse $(\lambda-T)^{-1}$ for each $\lambda \neq 0$. It should be like solving a linear ODE of first order.

