MATH 960: PROJECT III DUE: MARCH 31st, 2020

- (1) Show that in l^p , $1 , <math>x^n \rightharpoonup x$ if and only if (a) $\sup_n ||x^n||_{l^p} < \infty$.
 - (b) For each $k, x_k^n \to x_k$.
- (2) Show that in $c_0, x^n \rightharpoonup x$ if and only if
 - (a) $\sup_n \|x^n\|_{c_0} < \infty$.
 - (b) For each $k, x_k^n \to x_k$.
- (3) Let X be a Banach space, with a separable dual X^* . Let $\{x_n^*\}_n$ be a dense set in B_{X^*} . Show that the function

$$d(x,y) = \sum_{n=1}^{\infty} \frac{|\langle x - y, x_n^* \rangle|}{2^n}$$

defines a metric on X, which is consistent with the weak topology on the bounded sets.

In other words, let $\{x_n\}$ be a bounded sequence. Prove that $x_k \rightharpoonup x$ if and only if $\lim_k d(x_k, x) = 0$.

(4) We say that a norm in a Banach space is *locally uniformly convex (LUC)*, if for every x : ||x|| = 1 and $\epsilon > 0$, there exists δ , so that whenever there is y : ||y|| = 1 and $||\frac{x+y}{2}|| > 1 - \delta$, then $||x - y|| < \epsilon$.

Prove that if X has a (LUC) norm and a sequence $\{x_n\}$ satisfies $x_n : x_n \to x$ (i.e. weakly convergent) and $\lim_n ||x_n|| = ||x||$, then $\lim_n ||x_n - x||_X = 0$.

Hint: Show first that matters reduce, without loss of generality, to the case $||x_n|| = 1 = ||x||$.

Remarks:

- All L^p , 1 norms are (LUC).
- This gives a a necessary and sufficient condition in (LUC) spaces for a weakly convergent sequence to be norm convergent.
- (5) Let X be a Banach space, so that X^* is separable. Prove that X is separable as well.

Bomus: 5 points Clearly X separable does not imply that X^* is separable (e.g. $X = l^1, X^* = l^{\infty}$). Which part of the proof does not go through?

Hint: Start with a sequence $\{x_n^*\}$: $||x_n^*|| = 1$, which is dense in S_{X^*} . Show that there is $\{x_n\}$ in B_X , so that $|x_n^*(x_n)| \ge \frac{1}{2}$. Prove that $Y = \overline{span[x_n]}$ is a separable subspace of X. Prove that Y = X (If not, pick an element $x^* \in Y^{\perp}$).

(6) For the space $l^1 = (c_0)^*$, we have $||x^*||_{l^1} = \sup_{x:||x||_{c_0}} |x^*(x)|$, but the supremum may not be achieved.

Prove that the supremum is achieved for $x^* \in l^1$ (i.e. there is $x \in c_0$: $||x|| = 1 : ||x^*|| = |x^*(x)|$) if and only if x^* has finite support, i.e. there exists N, so that $x^*(n) = 0, n > N$.

(7) Prove that $K = (B_{c_0}, \mathcal{U}_{l^1})$ is not compact. That is, the unit ball of c_0 , endowed with the weak topology, is not compact.

Hint: Use the previous exercise and consider $f \in l^1$, with infinite support, as a function on K.