MATH 960: PROJECT III
 DUE: MARCH $31^{s t}, 2020$

(1) Show that in $l^{p}, 1<p<\infty, x^{n} \rightharpoonup x$ if and only if
(a) $\sup _{n}\left\|x^{n}\right\|_{l^{p}}<\infty$.
(b) For each $k, x_{k}^{n} \rightarrow x_{k}$.
(2) Show that in $c_{0}, x^{n} \rightharpoonup x$ if and only if
(a) $\sup _{n}\left\|x^{n}\right\|_{c_{0}}<\infty$.
(b) For each $k, x_{k}^{n} \rightarrow x_{k}$.
(3) Let X be a Banach space, with a separable dual X^{*}. Let $\left\{x_{n}^{*}\right\}_{n}$ be a dense set in $B_{X^{*}}$. Show that the function

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{\left|\left\langle x-y, x_{n}^{*}\right\rangle\right|}{2^{n}}
$$

defines a metric on X, which is consistent with the weak topology on the bounded sets.

In other words, let $\left\{x_{n}\right\}$ be a bounded sequence. Prove that $x_{k} \rightharpoonup x$ if and only if $\lim _{k} d\left(x_{k}, x\right)=0$.
(4) We say that a norm in a Banach space is locally uniformly convex (LUC), if for every $x:\|x\|=1$ and $\epsilon>0$, there exists δ, so that whenever there is $y:\|y\|=1$ and $\left\|\frac{x+y}{2}\right\|>1-\delta$, then $\|x-y\|<\epsilon$.

Prove that if X has a (LUC) norm and a sequence $\left\{x_{n}\right\}$ satisfies $x_{n}: x_{n} \rightharpoonup x$ (i.e. weakly convergent) and $\lim _{n}\left\|x_{n}\right\|=\|x\|$, then $\lim _{n}\left\|x_{n}-x\right\|_{X}=0$.

Hint: Show first that matters reduce, without loss of generality, to the case $\left\|x_{n}\right\|=1=\|x\|$.

Remarks:

- All $L^{p}, 1<p<\infty$ norms are (LUC).
- This gives a a necessary and sufficient condition in (LUC) spaces for a weakly convergent sequence to be norm convergent.
(5) Let X be a Banach space, so that X^{*} is separable. Prove that X is separable as well.

Bomus: 5 points Clearly X separable does not imply that X^{*} is separable (e.g. $X=l^{1}, X^{*}=l^{\infty}$). Which part of the proof does not go through?

Hint: Start with a sequence $\left\{x_{n}^{*}\right\}:\left\|x_{n}^{*}\right\|=1$, which is dense in $S_{X^{*}}$. Show that there is $\left\{x_{n}\right\}$ in B_{X}, so that $\left|x_{n}^{*}\left(x_{n}\right)\right| \geq \frac{1}{2}$. Prove that $Y=\operatorname{span}\left[x_{n}\right]$ is a separable subspace of X. Prove that $Y=X$ (If not, pick an element $\left.x^{*} \in Y^{\perp}\right)$.
(6) For the space $l^{1}=\left(c_{0}\right)^{*}$, we have $\left\|x^{*}\right\|_{l^{1}}=\sup _{x:\|x\|_{c_{0}}}\left|x^{*}(x)\right|$, but the supremum may not be achieved.

Prove that the supremum is achieved for $x^{*} \in l^{1}$ (i.e. there is $x \in c_{0}$: $\left.\|x\|=1:\left\|x^{*}\right\|=\left|x^{*}(x)\right|\right)$ if and only if x^{*} has finite support, i.e. there exists N, so that $x^{*}(n)=0, n>N$.
(7) Prove that $K=\left(B_{c_{0}}, \mathcal{U}_{l^{1}}\right)$ is not compact. That is, the unit ball of c_{0}, endowed with the weak topology, is not compact.
Hint: Use the previous exercise and consider $f \in l^{1}$, with infinite support, as a function on K.

