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1 Chapter I

1.1 Metric and Banach spaces

We start with a few definitions

Definition 1. We say that (X ,d) is a metric space, if d : X × X → R+, with the following

properties

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. (triangle inequality) d(x, z) ≤ d(x, y)+d(y, z).

We say that U ⊂ X is an open set, if for every x ∈U , there is an ε> 0, so that x ∈ Bε(x) = {y ∈
X : d y, x) < ε} ⊂U .

The collection τ= {U ⊂ X : U −open} is called a topology on X .

Definition 2. We say that the sequence {xn}n ⊂ (X ,d) is a Cauchy sequence, if for every

ε> 0, there is N , so that whenever n > m > N , there is d(xn , xm) < ε.

Note: Every convergent sequence is Cauchy.

We say that the metric space (X ,d) is complete, if every Cauchy sequence is convergent.

Note: In order to show that a Cauchy sequence is convergent, it suffices to find a convergent

subsequence.
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Definition 3. Let X be a vector space, i.e. the operations x+y and ax (where x, y are vectors

and a is a scalar) a are well-defined. A function ‖ ·‖ : X → R+ is called a norm on X , if

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0

2. ‖ax‖ = |a|‖x‖

3. (triangle inequality) ‖x + y‖ ≤ ‖x‖+‖y‖.

A vector space with a norm (X ,‖ · ‖) is called a normed space. A normed space (X ,‖ · ‖),

which is complete in the metric d(x, y) = ‖x − y‖ is called a Banach space.

A few examples:

• l p ,1 ≤ p <∞,

l p =
{

x = (xn)∞n=1 : ‖x‖ :=
( ∞∑

n=1
|xn |p

) 1
p
}

.

• For a measure space (M ,dµ), Lp (M ,dµ),1 ≤ p <∞,

Lp (M ,dµ) =
{

f : M → R : ‖ f ‖ :=
(∫

M
| f (x)|p dµ

) 1
p

}
.

• L∞(M ,dµ),

L∞(M ,dµ) = {
f : M → R : ‖ f ‖ := esssup{| f (x)| : x ∈ M

}
.

1.2 Compactness

Definition 4. We say that K ⊂ (X ,d) is compact, if every open cover K ⊂∪αUα has a finite

subcover, i.e. there exists α1, . . . ,αN , so that K ⊂∪N
j=1Uα j .

We say that K ⊂ (X ,d) is sequentially compact, if every sequence {xn} in K has a conver-

gent subsequence converging to x ∈ K . We say that K is precompact, if K is compact.
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Proposition 1. Let (X ,d) be a complete metric space. Then, K ⊂ (X ,d) is compact if and

only if K is sequentially compact.

Equivalently, K ⊂ (X ,d) is pre-compact if and only if every sequence {xn} in K has a

convergent subsequence.

In specific cases, one can characterize compactness efficiently.

1.2.1 Compacts in C (X ,C)

Let (X ,d) be a compact metric space. Introduce the space of continuous functions on X

C (X ,C) = { f : X →C : f is continuous,‖ f ‖ = sup
x∈K

| f (x)|}.

Theorem 1. (Arzela-Ascolli)

The subset K ⊂C (X ,C) is pre compact if and only if

1. K is bounded, i.e.

sup
f ∈K

‖ f ‖ <∞.

2. K is equi-continuous. That is, for every ε > 0, there exists δ > 0, so that for each

x, x ′ ∈ X : d(x, x ′) < δ,

sup
f ∈K

| f (x)− f (x ′)| < ε.

1.2.2 Compacts in c0, l p spaces

Theorem 2. K ⊂ l p ,1 ≤ p <∞ is pre-compact if and only if

1. K is bounded, i.e.

sup
x∈K

‖x‖l p <∞.

2. For every ε> 0, there exists N , so that

sup
x∈K

∞∑
n=N

|xn |p < ε.
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K ⊂ c0,1 is pre-compact if and only if

1. K is bounded, i.e.

sup
x∈K

‖x‖c0 <∞.

2. For every ε> 0, there exists N , so that

sup
x∈K

sup
n≥N

|xn | < ε.

1.3 Bounded linear operators

Definition 5. Let (X ,‖ ·‖), (Y ,‖ ·‖) be normed spaces. A bounded linear operator A : X → Y

is said to be bounded, if ‖Ax‖Y ≤C‖x‖X .

Proposition 2. The space B(X ,Y ) = {A : X → Y ; A− bounded linear operator} can be made

a normed space via the norm

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖6=0

‖Ax‖
‖x‖ .

Note the inequality ‖Ax‖ ≤ ‖A‖‖x‖.

1.3.1 Finite dimensional spaces

We say that X is finite dimensional, if X = span[e1,e2, . . . ,en] and {e j }n
j=1 is linearly inde-

pendent. In such case di m(X ) := n.

Theorem 3. All norms on X are equivalent. That is, for any norm ‖x‖ on X , there is a C > 1,

so that C−1‖x‖ ≤ ‖x‖1 ≤C‖x‖, where ‖∑n
j=1λ j e j‖1 :=∑n

j=1 |λ j |.

In other words, X is isomorphic to Rn or Cn . Thus, the compactness is the same, so the

Heine-Borel theorem holds

Corollary 1. K ⊂ X , with di m(X ) = n is compact if and only if

1. K is bounded
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2. K is closed.

The next theorem states that this previous result characterizes finite dimensional spaces.

Theorem 4. Let (X ,‖ ·‖) be a normed space. Then, the following are equivalent

1. di m(X ) <∞

2. BX = {x ∈ X : ‖x‖ ≤ 1} is compact.

3. SX = {x ∈ X : ‖x‖ = 1} is compact.

1.3.2 Quotient spaces

Let (X ,‖ · ‖) be a normed space, Y ⊂ X , Y is a closed subspace. Then, define equivalence

relation x1 ∼ x2 : x1 −x2 ∈ Y . This introduces equivalence classes [x] = {x̃ ∈ X : x̃ ∼ x}.

Lemma 1. The quotient space X /Y = {[x] : x ∈ X } is a normed space, under the norm

‖[x]‖ = inf
y∈Y

‖x + y‖.

Moreover, if X is a Banach space, then X /Y is Banach space as well.

1.4 Dual spaces

Definition 6. For a normed space (X ,‖ · ‖), we say that its dual space is X ∗ = L(X ,R). That

is, X ∗ is the space of continuous linear functionals on X .

Examples:

• Hilbert space H , with a dot product 〈x, y〉. Its dual space can be identified with

itself1.
1This is in essence the Riesz representation theorem, see below
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• Lp (M ,dµ),1 ≤ p <∞. The dual space is (Lp (M ,dµ))∗ = Lq (M ,dµ), where 1
p + 1

q = 1.

Moreover, every Λ ∈ (Lp (M ,dµ))∗ has the form

Λ f =
∫

M
f g dµ, g ∈ Lq (M ,dµ),‖Λ‖(Lp )∗ = ‖g‖Lq

In particular, (l p )∗ = l q ,1 ≤ p <∞, 1
p + 1

q = 1.

• c0 = {x = (xn)∞n=1 : limn xn = 0,‖x‖c0 = supn |xn |}. Its dual is c∗0 = l 1.

• (l 1)∗ = l∞. Note however that (l∞)∗ ) l 1.

1.5 Hilbert spaces

Definition 7. Let H be a real vector space. If a bilinear form 〈·, ·〉 : H × H → R has the

properties

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0, if and only if x = 0

• 〈x, y〉 = 〈y, x〉

then we say that 〈·, ·〉 is a dot product on H.

In this case define ‖x‖ :=p〈x, x〉. In order to check it is defining a norm on H , we need

the following lemma.

Lemma 2. • |〈x, y〉| ≤ ‖x‖‖y‖ (Cauchy-Schwartz inequality)

• ‖x + y‖ ≤ ‖x‖+‖y‖.

Note that the Hilbert space norm satisfies the parallelogram identity

‖x + y‖2 +‖x − y‖2 = 2(‖x‖2 +‖y‖2).

Theorem 5. (Riesz representation theorem)

Let (H ,〈·, ·〉) be a Hilbert space. Then for any bounded linear functional Λ on H, there

exists an unique y ∈ H, so thatΛx = 〈x, y〉. Moreover, ‖Λ‖H∗ = ‖y‖. In other words, H∗ = H.
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Definition 8. Let S ⊂ H, H - Hilbert space. Orthogonal complement is

S⊥ = {x ∈ H : 〈x, y〉 = 0∀y ∈ S}.

Note that S⊥ is always a closed subspace of H.

Definition 9. We say that a Banach space X is a direct sum of two subspaces X = Y1⊕Y2, if

Y1 ∩Y2 =; and X ⊂ Y1 +Y2 = {y1 + y2 : y j ∈ Y j , j = 1,2}.

Note that in such case, for every x ∈ X , there is unique pair y1 ∈ Y1, y2 ∈ Y2, so that x =
y1 + y2.

Proposition 3. Let H be a Hilbert space and E ⊂ H is a subspace of it. Then

H = E ⊕E⊥.

1.6 Baire category theorem

Definition 10. Let (X ,d) be a complete metric space. Then,

• A is called nowhere dense, if Int (Ā) =;.

• A is called meager, if A ⊂∪∞
j=1 A j , where A j are nowhere dense.

• Ω is called residual, if Ωc is meager.

Note that if A is meager, then Ā is also meager. Ω is residual, if Ω ⊃ ∩∞
j=1U j , where U j are

open and dense. These are called Gδ sets.

Theorem 6. (Baire category theorem)

Let (X ,d) be a metric space. Let {U j }∞j=1 be a family of open and dense sets. Then ∩∞
j=1U j

is a dense set in X .

Corollary 2. Let (X ,d) be a metric space. Then,

• If Ω is residual, then Ω is dense.

• X 6= ∪∞
j=1F j , where F j is nowhere dense. Moreover, Int (∪∞

j=1F j ) =;.

The way this is used in practice is as follows: If X =∪∞
j=1F j and F j are closed, then there

exists j0, so that Int (F j0 ) 6= ;.
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2 Chapter II

2.1 Uniform boundedness principle

Theorem 7. (UBP)

Let (X ,‖·‖) and (Yi ,‖·‖i ) are Banach spaces, i ∈ I . Suppose that Ai : X → Yi are bounded

linear operators. Suppose that for every x ∈ X , the orbit {Ai x} is bounded. That is supi ‖Ai x‖ <
∞. Then,

sup
i

‖Ai‖ <∞.

Corollary 3. Suppose that (X ,‖ · ‖) and (Yi ,‖ · ‖i ), i ∈ I are Banach spaces. Suppose that

supi ‖Ai‖ =∞. Then, there exists x ∈ X , so that supi∈I ‖Ai x‖ =∞.

Another result, which is very useful in the application is the Banach-Steinhaus theorem.

Theorem 8. (Banach-Steinhaus)

Let X ,Y are Banach spaces and An : X → Y is a sequence of bounded linear operators, so

that limn An x exists for every x. Then

• supn ‖An‖ <∞

• AX := limn An x is a bounded linear operator

2.2 Open mapping theorem

Definition 11. We say that a mapping f : X → Y is open, if for every open set U ⊂ X , f (U )

is open.

Theorem 9. (Open mapping theorem)

Let X ,Y are Banach spaces and T : X → Y is a bounded linear operator, which is onto,

i.e. T (X ) = Y . Then, T is an open mapping.

One of the main applications is the inverse operator theorem.
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Theorem 10. Let X ,Y are Banach spaces and T : X → Y is a bounded linear operator,

which is a bijection, i.e. one-to-one and onto Then, the algebraically defined inverse oper-

ator T −1 : Y → X is bounded.

Some corollaries are as follows.

Corollary 4. Suppose that X is a Banach space, so that X = X1 ⊕ X2. Then, there exists a

constant c, so that for every x = x1 +x2,

‖x1‖+‖x2‖ ≤ c‖x1 +x2‖.

2.3 Hahn-Banach theorem

Definition 12. Let X be a real vector space. We say that p : X → R is a quasi semi-norm, if

1. For each λ> 0, p(λx) =λp(x)

2. p(x + y) ≤ p(x)+p(y).

If we have p(λx) = |λ|p(x) for each λ ∈ R, we say that p is a semi-norm.

Examples:

1. p(x) = ‖x‖

2. For a convex set K ⊂ X , define its Minkowski functional

pK (x) = inf{a > 0 :
x

a
∈ K }.

3. On l∞, p(x) = limsupn xn .

Theorem 11. (Hahn-Banach theorem)

Let X be a real normed space and p : X → R be a quasi semi-norm on it. Let Y ⊂ X be a

linear subspace and φ : Y → R is a linear functional, so that φ(y) ≤ p(y). Then, there exists

an extension Φ : X → R, so that Φ|Y =φ and Φ(x) ≤ p(x), x ∈ X .
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Corollary 5. (Complex version)

Let X be a complex Banach space and Y ⊂ X be a linear subspace. Let ψ : Y → C be a

complex linear functional, so that |ψ(x)| ≤ c‖x‖. Then, there exists an extensionΨ : X →C,

so that Ψ|Y =ψ and |Ψ(x)| ≤ c‖x‖, x ∈ X .

Lemma 3. (Properties of the Minkowksi functional)

Let X be real topological vector space and K ⊂ X is a convex set, with 0 ∈ Int (K ). Then,

its Minkowksi functional

pK (x) = inf{a > 0 :
x

a
∈ K }

satisfies p(λx) =λp(x) for each λ> 0, pK (x + y) ≤ pK (x)+pK (y).

2.4 Applications of Hahn-Banach theorem

2.4.1 Separation of convex sets

Theorem 12. (Hyperplane separation theorem) Let X be a real topological vector space

and K ⊂ X be convex and open subset. Then, for every y ∉ K , there exists a linear functional

Λ : X → R and c ∈ R, so that

sup
x∈K

Λ(x) ≤ c =Λ(y).

Theorem 13. (Separation of two convex sets )

Let X be a real topological vector space and A,B ⊂ X are convex subsets, so that Int (A) 6=
; and A∩B =;. Then, there exists a linear functional Λ : X → R and c ∈ R, so that

sup
x∈A

Λ(x) ≤ c ≤ inf
y∈B

Λ(y)

2.4.2 Closure of a linear subspace

For any normed space X and its dual X ∗, introduce the notation

〈x, x∗〉 := x∗(x),

to denote the action of x∗ on x. Clearly, this allows us to view x ∈ X ⊂ X ∗∗, via the formula

x(x∗) = 〈x, x∗〉.
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Definition 13. For any X real normed vector space and any set S ⊂ X , define its annihilator

S⊥ = {x∗ ∈ X ∗ : 〈s, x∗〉 = 0, ∀s ∈ S}.

Note: S⊥ is a always a closed linear subspace of X ∗.

Theorem 14. Let X be a Banach space, Y ⊂ X be a linear subspace, so that x0 ∈ X \Ȳ . Then,

δ= di st (x0,Y ) > 0 and there exists x∗ ∈ Y ⊥, so that ‖x∗‖ = 1, x∗(x0) = δ.

Corollary 6. For every x ∈ X , there is an x∗ ∈ X ∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖.

Corollary 7. Let X be a Banach space, Y ⊂ X be a linear subspace,Then,

x ∈ Ȳ ⇐⇒ 〈x, x∗〉 = 0,∀x∗ ∈ Y ⊥.

One might introduce for every S ⊂ X ∗, S> = {x ∈ X : 〈x, s〉 = 0, ∀s ∈ S}. In this case,

Corollary 7 reads

Ȳ = (Y ⊥)>.

3 Weak and Weak∗ topology

Let X be a real vector space and F be a collection of real-valued linear functionals. Define

the sets

VF = {∩m
i=1 f −1

i (ai ,bi ) : fi ∈F , ai < bi }.

Lemma 4. The set

UF = {U ⊂ X : ∀x ∈U ,∃V ∈ VF , x ∈V ⊆U }.

is a topology on X . In other words, VF is a base for UF , while the sets { f −1(a,b) : f ∈F , a <
b} are a sub-base for UF .

The topology (X ,UF ) may be equivalently defined by saying that xα → x exactly when

f (xα) → f (x) for each f ∈F .
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3.1 Weak topology on X

Definition 14. (Weak topology on X )

Let X real normed vector space and F = X ∗. The corresponding topology (X ,UX ∗) is

called weak topology on X .

Equivalently, xα tends to x weakly (denoted xα* x), if for all x∗ ∈ X ∗, x∗(xα) → x∗(x).

Proposition 4. Weak topology is weaker than the strong topology, i.e. UX ∗ ⊂U‖·‖. That is,

every weakly open set is strongly open. Equivalently, every strongly convergent sequence

is weakly convergent, i.e.

‖xα−x‖→ 0 =⇒ xα* x.

Remarks: The generic converse is false.

• In l p ,1 < p <∞, en * 0, while ‖en‖ = 1 (Exercise)

• In C [0,1], fn * f , if and only if supn ‖ fn‖C [0,1] < ∞ and fn tends to f point-wise.

(Exercise)

• In l p ,1 < p < ∞, xn * x if and only if supn ‖xn‖l p < ∞ and xn
k → xk for each k.

(Exercise)

Proposition 5. If UX ∗ =U‖·‖, then di m(X ) <∞.

For example S = {x ∈ X : ‖x‖ = 1} is always norm closed, if di m(X ) = ∞, one has that

S is not weakly closed, since 0 is in the weak closure of S. That is, if di m(X ) =∞, there is

xα : ‖xα‖ = 1, so that xα* 0.

The next result makes Proposition 5 ever more puzzling.

Theorem 15. (Shur’s theorem)

In l 1, limn ‖xn −x‖l 1 = 0 if and only if xn * x.

Note: Why is this not a contradiction with Proposition 5?
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3.2 Weak∗ topology on X ∗

Definition 15. (Weak∗ topology on X ∗)

Let X real normed vector space, consider X ∗ and F = X . The corresponding topology

(X ∗,UX ) is called weak∗ topology on X ∗.

Equivalently, x∗
α tends to x∗ weak∗ (denoted x∗

α* x∗), if for all x ∈ X , 〈x∗
α, x〉→ 〈x∗, x〉.

Remark: If X is reflexive2, then weak and weak∗ topologies on X ∗ coincide.

Proposition 6. On X ∗, the weak∗ topology, (X ∗,UX ) is weaker than the weak topology

(X ∗,UX ∗∗), which is weaker than the norm topology.

Proposition 7. Let X be a normed space and K ⊆ X is a convex subset. Then

K is closed if and only if K is weakly closed.

Lemma 5. (Mazur’s lemma)

Let X be a normed space and xn * x. Then, x ∈ conv{xn}. Equivalently, for all ε > 0,

there exists N ,λ1 ≥ 0, . . . ,λN ≥ 0 :
∑N

j=1λ j = 1, so that ‖x −∑N
j=1λ j x j‖X < ε.

Lemma 6. Let xn * x or xn + x. Then, supn ‖xn‖ <∞ and

‖x‖ ≤ liminf
n

‖xn‖.

For Hilbert spaces or more generally locally convex spaces, there is the partial reverse

as follows.

Proposition 8. Let X - Hilbert space or more generally locally convex space3. The following

are equivalent.

1. xn * x and limn ‖xn‖ = ‖x‖.

2. limn ‖xn −x‖X = 0.
2which happens exactly when X ∗ is reflexive
3It turns out that these are always reflexive so the weak and weak∗ topologies coincide
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3.3 Banach-Alaoglu’s theorem

Here is a version of the Banach-Alaoglu’s theorem, which is particularly useful in the ap-

plications.

Theorem 16. Assume that X is a separable Banach space. Then, every bounded sequence

in X ∗ has a weak∗ convergent subsequence. In other words, every bounded set is weak∗
pre-compact4.

The full theorem is as follows.

Theorem 17. (Banach-Alaoglu’s theorem)

The unit ball BX ∗ is weak∗ compact. In other words, (BX ∗ ,UX ) is compact.

Remark: The theorem fails for the weak topology, unless the weak∗ topology coincides

with the weak topology. In fact (BX ∗ ,UX ∗∗) is compact if and only if X is reflexive if and

only if X ∗ is reflexive.

4 Fredholm theory

Definition 16. Let X ,Y be normed spaces and A : X → Y be a bounded linear operator.

Define A∗ : Y ∗ → X ∗ by the assignment

〈A∗y∗, x〉 = 〈y∗, Ax〉

We use the

Lemma 7. Let A : X → Y is a bounded linear operator. Then, A∗ ∈ B(Y ∗, X ∗) and ‖A∗‖ =
‖A‖.

Lemma 8. Let A : X → Y , B : Y → Z . Then (B A)∗ = A∗B∗ and I∗ = I .

4Technically speaking, the claim is about weak∗ sequential pre-compactness. In view of the assumption
that X is separable, these two notions are the same.
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Examples:

1. A ∈ Mn×m , A : Rm → Rn , A = (ai j )1≤i≤n,1≤ j≤m ,

(Ax)i =
m∑

j=1
ai j x j .

At = (ai j i )1≤i≤n,1≤ j≤m , At : Rn → Rm .

2. A : l 2 → l 2, (Ax)n = xn+1,n = 1, . . ..

Then, (A∗y)1 = 0, (A∗y)n = yn−1,n = 2, . . ..

Theorem 18. Let A : X → Y . Then,

1. Im(A)⊥ = K er (A∗)

2. ⊥Im(A∗) = K er (A)

3. A has dense range if and only if A∗ is injective.

Note that if Im(A) is closed, then Im(A) =⊥ Im(A)⊥ = K er (A∗)⊥.

Example: A : l 2 → l 2, (Ax)n = xn
n is bounded operator, with dense image, but Im(A)( l 2.

Lemma 9. Let A : X → Y , x∗ ∈ X ∗. Then, the following are equivalent (TFAE)

1. x∗ ∈ Im(A∗)

2. There exists c > 0, so that for each x ∈ X ,

|〈x∗, x〉| ≤ c‖Ax‖Y .

4.1 Algebraic factorization of maps through invertible maps

Let X ,Y be vector spaces and A : X → Y be linear map. Not all maps are (algebraically)

invertible, in fact A must be injective and surjective in order to be invertible.
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Introduce π : X → X0 := X /K er (A), defined π(x) = [x] (where [x1] = [x2] if x1 − x2 ∈
K er (A)). Then, one can define A0 : X0 → Y .

A0([x]) := Ax.

Clearly, this definition is independent on the representative. Also, A0 : X0 → Y0 := Im(A).

Such a map is clearly invertible (A0 has K er (A0) = {0}, and Im(A0) = Im(A) = Y0). Further-

more, the inclusion Y0 = Im(A) ⊆ Y is denoted by i . So, one can factorize A = i ◦ A0 ◦π.

Question: When is such a map A0 continuous? When is its inverse continuous? What

does it mean in terms of estimates?

The following proposition provides the answers.

Proposition 9. Let X ,Y be vector spaces and A : X → Y be linear map. Then, one has the

factorization

A = i ◦ A0 ◦π.

where A0 : X /K er (A) → Im(A) is invertible.

Suppose now that X ,Y are normed vector spaces. If A is bounded, then A0 : X0 → Y0 is

bounded as well and

‖A0‖B(X0,Y0) = sup
x∈X

‖A(x)‖Y

infξ∈K er (A) ‖x +ξ‖X
≤ ‖A‖B(X ,Y ).

Theorem 19. (Closed Image Theorem)

Let A : X → Y be bounded linear map, A∗ : Y ∗ → X ∗. TFAE

1. Im(A) =⊥ K er (A∗).

2. Im(A) is closed.

3. there exists c > 0, so that for all x ∈ X ,

inf
ξ∈K er (A)

‖x +ξ‖X ≤ c‖Ax‖Y . (1)

4. Im(A∗) = K er (A)⊥
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5. Im(A∗) is closed.

6. there exists c > 0, so that for all x∗ ∈ X ∗,

inf
ξ∗∈K er (A∗)

‖x∗+ξ∗‖X ∗ ≤ c‖A∗x‖Y ∗ .

Remark: These are all equivalent to A0 : X0 → Y0 has bounded inverse.

4.2 Some important corollaries from the Closed Image Theorem

Proposition 10. (see Corollary 4.1.17/page 172)

Let A : X → Y , X ,Y -Banach. Then

• A is surjective if and only if A∗ is injective and Im(A∗) is closed. Equivalently,

‖y∗‖Y ∗ ≤ c‖A∗y∗‖X ∗ . (2)

• A∗ is surjective if and only if A is injective and Im(A) is closed. Equivalently,

‖x‖X ≤ c‖Ax‖Y . (3)

A simple consequence is

Corollary 8. Let A : X → Y be a bounded linear operator. Then, A is a bijection if and only

if A∗ is a bijection.

4.3 Compact operators

Definition 17. We say that K : X → Y is compact operator, if K (BX ) is precompact. Equiv-

alently, for every bounded sequence xn , {K xn} has a convergent subsequence. In particular,

K is bounded.

A bounded operator A : X → Y is called a finite rank operator, if di m(Im(A)) <∞. Note

that each finite rank operator is compact.
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Lemma 10. (Lemma 4.2.3/page 174)

Let K : X → Y be compact. Then, if xn * x, then limn ‖K xn −K x‖ = 0.

Exercise: Show that A is finite rank if and only if there exists x∗
1 , . . . , x∗

N ∈ X ∗ and y1, . . . , yN ∈
Y , so that A =∑N

j=1 x∗
j ⊗ y j or

Ax =
N∑

j=1
〈x∗

j , x〉y j .

Also, check the exercises/examples on page 175.

Theorem 20. (Theorem 4.2.10/page 175) We have the following.

1. Let A : X → Y and B : Y → Z be both bounded. If one of them is compact, then

B A : X → Z is compact as well.

2. Kn : X → Y are compact and limn ‖Kn −K ‖ = 0. Then, K is compact as well.

3. K is compact if and only if K ∗ is compact.

4.4 Fredholm operators

Definition 18. Let A : X → Y be a bounded linear operator. As usual

K er (A) = {x : Ax = 0} ⊂ X ; Im(A) = {Ax : x ∈ X } ⊆ Y ,coK er (A) := Y /Im(A).

If Im(A) is a closed subspace, then coK er (A) is a Banach space.

A is Fredholm, if di m(K er (A)) <∞,di m(CoK er (A)) <∞. In this case, we introduce its

index

i nd(A) = di m(K er (A))−di m(CoK er (A)).

Examples:

1. If di m(X ),di m(Y ) <∞, then any A : X → Y is Fredholm and

i nd(A) = di m(X )−di m(Y )

For X = Y = Rn and A ∈ Mn,n , this says i nd(A) = 0. This is the rank-nullity theorem

(i.e. di m(K er (A))+di m(Im(A)) = n) in disguise. Why?
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2. if A : X → Y is a bijection, then i nd(A) = 0.

Next is the duality theorem, which states that Fredholmness if preserved under taking

adjoints.

Theorem 21. Let A : X → Y is bounded operator. Then,

• If A, A∗ have closed images, then

di m(K er (A∗)) = di m(CoK er (A)),di m(CoK er (A∗)) = di m(K er (A)).

• A is Fredholm if and only if A∗ is Fredholm. In that case,

i nd(A) =−i nd(A∗).

4.5 Some motivations

The first one is about matrices and a basic question in linear algebra. Let A ∈ Mm,n , so

that A : Rn → Rm , everything is real.

Question: When is the following linear equation

Ax = b, x ∈ Rn ,b ∈ Rm (4)

solvable? This is clearly solvable if and only if b ∈ Im(A). In finite dimensions, all sub-

spaces are closed, so we can use Theorem 20 to say Im(A) = K er (A∗)⊥. So, (4) is solvable

if and only if b ⊥ K er (A∗). More specifically, we proved

Proposition 11. The equation (4) is solvable if and only if b ⊥ K er (A∗). In particular, if

K er (A∗) = {0}, then (4) is solvable for each b ∈ Rm .

The other example is more sophisticated and it involves operator equations in the form

(I d −K ) f = g , (5)

where K : X → X is a compact operator, X is a Banach spaces. We will show later that

such operators are Fredholm of index zero. In particular, Im(I −K ) is closed. So,
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Proposition 12. The equation (5) is solvable if and only if g ⊥ K er (I−K ∗). If K er (I−K ∗) =
{0}, then (5) is uniquely solvable.

Proof. Again, Im(I −K ) is closed and so, Im(I −K ) = K er (I −K ∗)⊥. If K er (I −K ∗) = {0},

then Im(I−K ) = X , whence CoK er (I−K ) = {0}, so codi m(I−K ) = 0. Since i nd(I−K ) = 0,

it follows that di m(K er (I −K )) = 0, so K er (I −K ) = {0}. It follows that I −K is a bijection

and (5) is uniquely solvable.

The results in Propositions Propositions 11 and 12, are typical to what is referred to

as Fredholm alternatives.

Example: Let K : [0,1]× [0,1] →C is a continuous function. Then, the operator

K f (x) =
∫ 1

0
K (x, y) f (y)d y : L2[0,1] → L2[0,1],

is compact. Thus, an equation in the form5

λ f (x)−
∫ 1

0
K (x, y) f (y)d y = g (x), (6)

where λ ∈C and g ∈ L2[0,1] has an unique solution if and only if K er (λ̄−K ∗) = {0} or

λ̄z(x) =
∫ 1

0
K̄ (y, x)z(y)d y,

has no solutions z ∈ L2[0,1]. Why? Note the reversed role of (x, y) → (y, x), this is not a

typo.

4.6 Characterization of Fredholm operators

We start with an important lemma in the theory, which may be of independent interest.

Lemma 11. (Lemma 4.3.9) Let D : X → Y , X ,Y are Banach spaces.

Then, D has a finite dimensional kernel and closed image if and only if there exists a

Banach space Z and a compact operator K : X → Z , so that

‖x‖X ≤ c(‖Dx‖Y +‖K x‖Z ). (7)
5This is a toy version of something that appears very frequently in PDE theory!
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Here is the characterization of the Fredholmness. Roughly speaking, Fredholm opera-

tors are those that are invertible modulo compacts. Note the typo in the book, the partial

inverse F , must be F : Y → X instead of F : X → Y .

Theorem 22. (Theorem 4.3.8)

Let A : X → Y be a bounded linear operator, X ,Y are Banach spaces. Then, the following

are equivalent.

1. A is Fredholm

2. There exists a bounded linear operator F : Y → X , so that I dX−F A : X → X , I dY −AF :

Y → Y are both compacts.

Comments:

1. From the proof, it is clear that it is enough to assume that there are two (maybe

different ones), F1,F2 : Y → X , so that IX −F1 A and I dY − AF2 are compacts. This is

sometimes useful.

2. By Theorem 20, K (X ) = {K : X → X ,K −compact} is a closed, two side ideal, in the

algebra B(X ). Thus, one may define the Calkin algebra

L(X ) = B(X )/K (X ),

In it, one may state the theorem as follows A is Fredholm if and only if [A] is invert-

ible in the Calkin algebra (with inverse [F ] as in the theorem).

3. For every compact operator K : X → X , operators of the type I d − K : X → X is

Fredholm. Just apply the theorem with F = I d .

Exercise: If B : X → X is invertible and K : X → X is compact, then B −K is Fredholm.

The main focus this week is on how to compute the index.
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4.7 Composition of Fredholm operators

Theorem 23. (Theorem 4.4.1) Let A : X → Y and B : Y → Z are both Fredholm. Then,

B A : X → Z is Fredholm and

i nd(B A) = i ndex(A)+ i nd(B)

4.8 Stability of the Freholm index

The following result is a basic result in the theory, stating that a small (in norm) pertur-

bation does not change the index and neither does perturbation by compact (even it is a

large compact operator).

Theorem 24. (Theorem 4.4.2) Let D : X → Y is Fredholm. Then

1. If K : X → Y is compact, then D +K is Fredholm and

i nd(D +K ) = i nd(D)

In other words, adding compact to a Fredholm preserves the Fredholmness and

keeps the index unchanged.

2. There exists a constant ε > 0, so that whenever P : X → Y is a bounded operator,

‖P‖ < ε, then D +P is Fredholm and i nd(D +P ) = i nd(D).

In other words, the Fredholm operators are an open set in the space of bounded

operators B(X ,Y ) and i nd : F r edholm →N is locally a constant. In fact,

F r edholms =∪n∈ZΩn ,

where each setΩn = {A : X → Y , i nd(A) = n} is a component in the set of Fredholm

operators.

4.9 Applications

Immediately from the previous results, for each K : X → X compact, we have i nd(I +K ) =
i nd(I ) = 0.
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Theorem 25. Let K : X → X be a compact operator. Then, for each λ ∈C,λ 6= 0,

1. di m(K er (λ−K )) <∞.

2. di m(K er (λ−K )) = di m(K er (λ−K ∗))

3. Suppose K er (λ−K ) = {0}. Then, (λI d −K ) is invertible.

4. (Fredholm alternative) The equation

(λ−K ) f = g , f , g ∈ X (8)

has solutions if and only if g ⊥ K er (λ−K ∗). More specifically, If K er (λ−K ) = {0},

then (8) is uniquely solvable, in fact f = (λ−K )−1g .

If K er (λ−K ) 6= {0}, let n = di m(K er (λ−K )) ≥ 1. There exist x1, . . . , xn ∈ X , a basis

of K er (λ−K ) and x∗
1 , . . . , x∗

n ∈ X ∗ a basis of K er (λ−K ∗), so that (8) has solutions if

and only if 〈x∗
j , g 〉 = 0. If this is satisfied, g ∈ Im(λ−K ), (λ−K ) : X → Im(λ−K ) is

invertible and the general solution of (8) is in the form

f = (λ−K )−1g +
n∑

j=1
µ j x j .

Remark: The condition λ 6= 0 is crucial. The theorem fails for λ= 0.

5 Spectral theory

The first part is section 5.1 in the book (pages 198-202), which introduces the concept of

a Banach space over the complex numbers. I have mentioned several times how various

things work in that case. Bottom line is that all the theorems remain the same, includ-

ing property of norms, linear functionals, Hahn-Banach6, open mapping theorem, closed

graph theorem, inverse function theorem, Banach-Alaoglu theorem, Fredholm theory. I

recommend you read these pages on your own.

6which needs a little extension from the real case, which I mentioned about in class
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5.1 Integration

We investigate the following:

Question: How does one integrate Banach space valued (B - valued) functions? How

much regularity does one need and what it means for B - valued functions?

A class that will be enough for our purposes is continuous functions, although there is

a notion of Riemann/Lebesgue integrable B - valued functions.

Lemma 12. (Integration of continuous functions, page 202) Let X be a Banach space (real

or complex) and x : [a,b] → X be a continuous B - valued function. Then, there exists an

unique ξ ∈ X , so that “ξ= ∫ b
a x(t )d t”. Formally, for every x∗ ∈ X ∗,

〈x∗,ξ〉 =
∫ b

a
〈x∗, x(t )〉d t .

The approach above is very common in how one passes from B - space valued functions

to “regular” scalar valued functions. The next lemma is a prime example.

Lemma 13. Let X be a Banach space (real or complex), x, y : [a,b] → X are continuous B -

valued functions. Then,

1. (Linearity of the integral)∫ b

a
(x(t )+ c y(t ))d t =

∫ b

a
x(t )d t + c

∫ b

a
y(t )d t .

2. For a < c < b, ∫ b

a
x(t )d t =

∫ c

a
x(t )d t +

∫ b

c
x(t )d t .

3. Let A : X → Y be bounded linear operator, then

A
∫ b

a
x(t )d t =

∫ b

a
Ax(t )d t .

4. (Fundamental theorem of calculus)

Let x : [a,b] → X be continuously differentiable, i.e. there is a continuous B - valued

function g (t ), so that limh→0 ‖ x(t+h)−x(t )
h − g (t )‖ = 0 (and then ẋ(t ) = g (t )). Then,∫ b

a
ẋ(t )d t = x(b)−x(a).
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5. (change of variables formula )

Let φ : [α,β] → [a,b] be a differentiable and invertible transformation. Then∫ b

a
ẋ(t )d t =

∫ β

α
x(φ(s))φ′(s)d s.

6. (Triangle inequality for integrals)

‖
∫ b

a
x(t )d t‖ ≤

∫ b

a
‖x(t )‖d t

7. If

x(t ) = x0 +
∫ t

a
y(s)d s,

then x is continuously differentiable with ẋ(t ) = y(t ).

Next topic is holomorphic B valued functions.

5.2 Holomorphic functions

Definition 19. LetΩ⊂C be an open set, X is a complex Banach space, f :Ω→ X is contin-

uous. We say that f is holomorphic, denoted H(Ω), if

f ′(z) := lim
h→0

f (z +h)− f (z)

h
∈ X ,

exists and f ′ :Ω→ X is continuous function.

Let γ be a C 1 curve in Ω, i.e. γ : [a,b] →Ω, γ ∈C 1(a,b)∩C [a,b]. Then,∫
γ

f (z)d z :=
∫ b

a
f (γ(s))γ′(s)d s.

It is tempting to ask:

Question: Is it true that f is B valued holomorphic function if and only if z →〈x∗, f (z)〉 is

(scalar) holomorphic for each x∗ ∈ X ∗

The next lemma shows that and it is in fact more general.
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Lemma 14. LetΩ⊂C be an open set, X ,Y are complex Banach spaces and A :Ω→ L(X ,Y )

is a weakly continuous function, i.e. for each x ∈ X , y∗ ∈ Y ∗, z →〈y∗, A(z)x〉 is continuous

function.

Then, the following are equivalent:

1. A is holomorphic.

2. For each x ∈ X , y∗ ∈ Y ∗,

z →〈y∗, A(z)x〉

is holomorphic on Ω.

3. (Cauchy theorem) For each z0 ∈Ω and r0 > 0, so that Br (z0) ⊂Ω,

〈y∗, A(ω)x〉 = 1

2πi

∫
|z−z0|=r

〈y∗, A(z)x〉
z −ω d z, (9)

for each r : 0 < r < r0 and ω : |ω− z0| < r .

Remarks:

• Formula (9) may be generalized to closed curves of index one around z0.

• If you apply this to the mapping A(z) = f (z)x∗, where f :Ω→ Y and x∗ is arbitrary

non-zero element of X ∗, we obtain that f : Ω→ Y is holomorphic if and only if f

is weakly holomorphic, i.e. for every y∗ ∈ Y ∗, z → 〈y∗, f (z)〉 is holomorphic. Also,

applying (9) to this, we obtain the Cauchy formula

f (ω) = 1

2πi

∫
|z−z0|=r

f (z)

z −ωd z. (10)

Some exercises that are good results.

Proposition 13. Let X be a Banach space, f :Ω→ X be holomorphic. Then,

1. f ′ :Ω→ X is also holomorphic.
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2.

f (n)(ω) = n!

2πi

∫
|z−z0|=r

f (z)

(z −ω)n+1
d z. (11)

3. Let {an}n is a sequence of elements in X . Suppose that limsupn→∞ ‖an‖ 1
n <∞, so that

ρ := 1

limsupn→∞ ‖an‖ 1
n

> 0.

Then, the formula

f (z) :=
∞∑

n=0
an zn ,

defines a B valued function on the domain Bρ(0) ⊂C. Also,

an = 1

2πi

∫
|z|=r

f (z)

zn+1
d z,r < ρ.

The function that we really want to consider is, for A ∈ L(X ), the operator valued func-

tion z → (z − A)−1, whenever it exists. This is called resolvent set ρ(A), which happens to

be open subset of C. It is also the complement of the spectrum σ(A).

5.3 Spectrum

Definition 20. Let X be a complex Banach space and A ∈ L(X ) be bounded linear operator.

The spectrum is introduced as follows

σ(A) = {λ ∈C : (λ− A) is not bijective/invertible}

Equivalently the resolvent set ρ(A) =C\σ(A) can be defined independently as

ρ(A) = {λ ∈C : (λ− A) is bijective/invertible}

Question: What are the reasons for λ− A not to be invertible? It is either not injective

or not surjective or both. We then subgroup them in two distinct/disjoint subgroups as

follows - it is either A) not injective, or B) it is injective, but not surjective.

You can further group them in three distinct major groups(but be aware that there are

other ways to group them, which makes it so confusing!) - basically group B is split in

additional two groups. More specifically:
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1. Non-trivial kernel - K er (λ− A) 6= {0}, i.e. λ− A is not injective.

2. K er (λ− A) = {0}, but Im(λ− A) is not dense in X .

3. K er (λ− A) = {0}, Im(λ− A) is dense in X , but Im(λ− A) 6= X = Im(λ− A).

The reasons for this split are historical and are partially motivated by the stability of these

parts of the spectrum under perturbations.

Eventually σ(A) = Pσ(A)∪Rσ(A)∪Cσ(A), as follows.

Definition 21. • Point spectrum - λ− A is not injective or K er (λ− A) 6= {0}.

Pσ(A) = {λ ∈C : K er (λ− A) 6= {0}}.

• Residual spectrum K er (λ− A) = {0}, but Im(λ− A) is not dense in X .

Rσ(A) = {λ ∈C : K er (λ− A) = {0}, Im(λ− A) 6= X }.

• Continuous spectrum K er (λ− A) = {0}, Im(λ− A) = X , but the image is not closed,

or Im(λ− A) 6= Im(λ− A) = X .

Cσ(A) = {λ ∈C : K er (λ− A) = {0}, Im(λ− A) 6= Im(λ− A) = X }.

Remarks:

• In finite dimensions A : X → X , di m(X ) = n, σ(A) = Pσ(A), while Rσ(A) =Cσ(A) =
;. Moreover, σ(A) is a finite set

#σ(A) ≤ n

This is just the fact that a matrix λ− A is non-invertible if and only if det(λ− A) = 0.

λ is then called an eigenvalue. In this case,

σ(A) = {λ : det(λ− A) = 0},#σ(A) = n,

if one counts eigenvalues with respective multiplicity.
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• X = l 2. For the shift operators A,B : l 2 → l 2 defined by Ax = (x2, x3, . . .),B x = (0, x1, . . .),

we have

σ(A) = {λ : |λ| ≤ 1},Pσ(A) = {λ : |λ| < 1},Rσ(A) =;,Cσ(A) = {λ : |λ| = 1}

σ(B) = {λ : |λ| ≤ 1},Pσ(B) =;,Rσ(B) = {λ : |λ| < 1},Cσ(B) = {λ : |λ| = 1}

Remark: For A, eigenvectors are xλ = (λ,λ2, . . .), |λ| < 1, so that Axλ = λxλ. For B , clearly

(λ−B)x = 0 implies x = 0.

Lemma 15. Let A : X → X be a bounded linear operator, A∗ : X ∗ → X ∗ is the dual operator.

Then

• σ(A) is a compact subspace of C

• σ(A∗) =σ(A)

•

Pσ(A∗) ⊂ Pσ(A)∪Rσ(A),Rσ(A∗) ⊂ Pσ(A)∪Cσ(A),Cσ(A∗) ⊂Cσ(A)

Pσ(A) ⊂ Pσ(A∗)∪Rσ(A∗),Rσ(A) ⊂ Pσ(A∗),Cσ(A) ⊂ Rσ(A∗)∪Cσ(A∗).

Proof. For the boundedness of σ(A), we show that σ(A) ⊂ {λ : |λ| ≤ ‖A‖}. Indeed, let λ :

|λ| > ‖A‖. Then,

λ− A =λ(I −λ−1 A).

Since ‖λ−1 A‖ = ‖A‖
|λ| < 1,, the operator (I−λ−1 A) is invertible by von Neumann, see Lemma

20. It remains to show that σ(A) is closed. It is equivalent to show that ρ(A) is open. This

is again Lemma 20. Indeed, let λ0 ∈ ρ(A). Then, for all λ : |λ−λ0| ≤ 1
‖(λ0−A)−1‖ , we have by

Lemma 20 that

λ− A = (λ−λ0)+ (λ0 − A) = (λ0 − A)(I + (λ−λ0)(λ0 − A)−1).

Again, by von Neumann, if ‖(λ−λ0)(λ0 − A)−1‖ < 1, we have invertibility of λ− A, so ρ(A)

is an open set.

2) follows from Corollary 8, which states that λ ∈ ρ(A) if and only if λ− A is bijection, if

and only if λ− A∗ is a bijection if and only if λ ∈ ρ(A∗).
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Next, we discuss the resolvent of A, whenever it is defined.

Lemma 16. Let X be a complex Banach space and A ∈ B(X ). Then ρ(A) is an open set and

define, for λ ∈ ρ(A),

Rλ(A) := (λ− A)−1

Then R : ρ(A) → B(X ) is a holomorphic B(X ) valued mapping, which satisfies the resol-

vent identity

Rλ(A)−Rµ(A) = (µ−λ)Rλ(A)Rµ(A),λ,µ ∈ ρ(A). (12)

In particular, its complex derivative satisfies

R ′(λ) =−Rλ(A)2.

Remark: Note that the resolvents commute, i.e. Rλ(A)Rµ(A) = Rµ(A)Rλ(A), if we apply

(12) with µ instead of λ and λ instead of µ.

We first establish basic properties of spectra.

5.4 Spetral radius formula

We first define spectral radius.

Definition 22. For a bounded operator A ∈ L(X ), define its spectral radius

r A := inf
{
µ> 0 :σ(A) ⊂ {z : |z| <µ}

}= sup
λ∈σ(A)

|λ| ≥ 0.

Theorem 26. Let X be non-trivial complex Banach space and A ∈ L(X ). Then, σ(A) is

non-empty and

r A = lim
n→∞‖An‖ 1

n .

Remark: Part of the claim is that the limit limn→∞ ‖An‖ 1
n exists.
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5.5 Spectrum of compact operators

Most of the stuff here is already contained in Theorem 25, but some of the notions come

up for more general operators. Clearly,

K er ((λI − A)) ⊆ K er ((λI − A)2) ⊆ . . . ⊆ K er ((λI − A)k ) ⊆ K er ((λI − A)k+1) ⊆ . . .

Here, the elements K er ((λI −A)) are called eigenvectors, while the elements of K er ((λI −
A)2) are all elements, which are either eigenvectors or (first generations) adjoint eigen-

vectors . Think Jordan normal forms

J =
(
λ 1
0 λ

)
,

so that e1 ∈ K er (λ− J ), while e2 ∈ K er ((λ− J )2) \ K er (λ− J ) and so on. The generalized

eigenspace is

Eλ(A) =∪∞
k=1K er ((λI − A)k ).

If K er ((λI − A)k ) = K er ((λI − A)k+1), we say that it stabilizes and in fact Eλ = K er ((λI −
A)k ). This does not have to happen for general A!

Theorem 27. (Spectrum of compact operators) Let X be a complex Banach space and A is

a compact operator on it. Then, σ(A) \ {0} ⊂ Pσ(A) and

1. For any λ ∈σ(K ) \ {0}, di m(Eλ) <∞ and in fact there exists m, so that

K er ((λI − A)m) = K er ((λI − A)m+1)

In such a case, Eλ(A) = K er ((λI − A)m) and

X = Eλ⊕ Im((λI − A)m). (13)

2. Every non-zero eigenvalue is an isolated point in σ(A).

5.6 Holomorphic functional calculus

We would like to define f (A) ∈ L(X ) for every holomorphic function f defined onΩ, which

contains σ(A).
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Definition 23. For every curve γ ⊂Ω, so that σ(A) ⊂ Int (γ), we require that for every λ ∈
σ(A),

i ndγ(λ) = 1

2πi

∫
γ

d z

z −λ = 1.

Then, for every f ∈ H(Ω), introduce

f (A) := 1

2πi

∫
γ

f (z)(z − A)−1d z

Remark: By the Cauchy theorem, the choice of curve γ is non-essential, as long as the

condition i ndγ(λ) = 1 for all λ ∈σ(A) is satisfied.

Theorem 28. Let X be a complex Banach space and A ∈ L(X ). Then,

1. Let Ω⊂C, so that σ(A) ⊂Ω. Then, for every f , g ∈ H(Ω),

( f + g )(A) = f (A)+ g (A), ( f g )(A) = f (A)g (A).

2. p(z) =∑N
k=0 ak zk , then p(A) =∑n

k=0 ak Ak .

3. Spectral mapping theorem

σ( f (A)) = f (σ(A)).

4. f :Ω→U , g : U →C, f , g holomorphic, then

g ( f (A)) = (g ◦ f )(A).

5. Let σ(A) = Σ0 ∪Σ1, where Σ0 and Σ1 are disjoint. Define the holomorphic functions

f0|Σ0 = 1, f0|Σ1 = 0 and f1 = 1− f0. Then, P0 := f0(A), P1 = f1(A) are projections,

i.e. P 2
j = P j , j = 1,2, P0P1 = P1P0 = 0 and they induce an A invariant decomposition

X = X0 ⊕X1, X j = P j (X ), so that A j := (z f j )(A) = AP j : X j → X j and σ(A j ) =Σ j .

5.7 Adjoint operators

We now specialize on operators on a Hilbert space. It is largely a repetition of the previ-

ously studied material, but now in the case of Hilbert spaces with complex scalars. One
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subject, which is often subject of a lot of confusion, that I would like to discuss in detail, is

adjoint versus dual operators.

For complex matrices, on Rn , we have two operations of adjoints - At and A∗. Namely,

if A = (ai j )n
i , j=1,

At = (a j i )n
i , j=1, A∗ = (a j i )n

i , j=1.

Thus, for the duality operation, 〈x, y〉 =∑n
j=1 x j y j , we have 〈Ax, y〉 = 〈x, At y〉, whereas for

the dot product (x, y) =∑n
j=1 x j ȳ j , we have (Ax, y) = (x, A∗y). Similarly for Hilbert spaces,

we have dual and adjoint operators. By Riesz representation theorem, one can define the

duality operation in terms of the dot product, as follows

〈x, y〉 := (x, ȳ)

Definition 24. Let H , (·, ·) be a complex Hilbert space. Recall its dot product is sesquilinear,

i.e. (a,λb) = λ̄(a,b). Then, given A ∈ L(H), the adjoint operator is defined as the unique

operator A∗, with

(Ax, y) = (x, A∗y).

From now on, whenever we talk about Hilbert spaces, A∗ would mean the adjoint op-

erator, rather than the dual one (I wish the standard notation were At for the dual, say in

the previous chapter, but that is not the case!).

Next, here are some properties of the adjoint operator A∗.

Lemma 17. (see Lemma 5.9, page 226) Let H be a Hilbert space and A ∈ L(H). Then,

• A∗ ∈ L(H) and ‖A∗‖ = ‖A‖.

• (AB)∗ = B∗A∗, (λA)∗ = λ̄A∗.

• A∗∗ = A.

• K er (A∗) = Im(A)⊥, Im(A∗) = K er (A)⊥.

•

σ(A∗) =σ(A).

33



5.8 Normal operators

Definition 25. Let H be a complex Hilbert space and A ∈ L(H). We say that

• A is normal, if A A∗ = A∗A

• A is unitary, if A A∗ = A∗A = I d or A∗ = A−1.

• A is self-adjoint, if A∗ = A.

Note that every self-adjoint and unitary is normal as well.

Examples:

• Matrices A = (ai j )n
i , j=1 with ai j = ā j i are self-adjoint operators on Cn .

• A : L2[0,1] → L2[0,1], Ax(t ) = f (t )x(t ), where f is periodic continuous function.

M∗x(t ) = f̄ (t )x(t ). So, M is always normal and it is self-adjoint if and only if f is

real-valued.

• The double infinite space l 2 = {x = {xn}∞n=−∞ : ‖x‖ = (∑∞
n=−∞ |xn |2

) 1
2 } and the shift

operators (Sx)(n) = xn+1, (Rx)n = xn−1. Note that S∗ = R,R∗ = S and

SS∗ = SR = I d = RS = S∗S.

Thus, S,R are unitary operators on l 2.

Exercise 1. Let A be self-adjoint. Then A = 0 if and only if (Ax, x) = 0 for all x.

Proposition 14. Let H be a complex Hilbert space and A ∈ L(H). Then,

• A is normal if and only if ‖A∗x‖ = ‖Ax‖ for all x ∈ H.

• A is unitary, if ‖Ax‖ = ‖A∗x‖ = ‖x‖.

• A is self-adjoint, if (Ax, x) ∈ R for all x ∈ H.
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Theorem 29. (Spectrum of normal operators) Let H be a complex Hilbert space and A ∈
L(H) be a normal operator. Then,

1. ‖An‖ = ‖A‖n for every n ∈N.

2. ‖A‖ = supλ∈σ(A) |λ|.

3. Rσ(A∗) = Rσ(A) =;, Pσ(A∗) = {λ̄ :λ ∈ Pσ(A)}.

4. If A is unitary, then σ(A) ⊂ {z : |z| = 1}.

Proof. 1) is easy, see page 229. 2) follows from it by the spectral radius formula. Part 3) is

also well done there.

Lemma 18. Let A = A∗ on a Hilbert space and λ 6= µ ∈ Pσ(A), with corresponding eigen-

vectors x, y, i.e. Ax =λx, Ay =µy. Then, (x, y) = 0.

Theorem 30. (Characterization of normal compact operators) Let H be a complex Hilbert

space and A ∈ L(H) be a compact and normal operator. Then, there exists an orthonormal

sequence {en}n∈I and λi , i ∈ I , so that limi λi = 0 and

Ax = ∑
i∈I
λi (x,ei )ei .

5.9 Spectrum of a self-adjoint operators

Theorem 31. Let H be a complex Hilbert space and A ∈ L(H) be a self-adjoint operator.

Then,

1. σ(A) ⊂ R

2. supσ(A) = sup‖x‖=1(Ax, x)

3. infσ(A) = inf‖x‖=1(Ax, x).

4. ‖A‖ = supx:‖x‖=1 |(Ax, x)|.
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We would like to extend the functional calculus, in the case of a self-adjoint operator,

to the algebra of continuous functions. The idea is to construct, for a fixed self-adjoint

operator A on a Hilbert space H , an algebra homomorphismΦA : C (σ(A)) → L(H), so that

ΦA(e0) = A, where e0(x) = x.

5.10 Banach algebras

Definition 26. We say that a Banach space A is an unital Banach algebra, if in addition

to the operations addition and multiplication by scalar, there are the operations product

(a,b) → ab (and the unit element 1 : a1 = 1a = a) and the star operation a → a∗, with the

properties

‖ab‖ ≤ ‖a‖‖b‖, (ab)∗ = b∗a∗, 1∗ = 1, (λa)∗ = λ̄a∗, a∗∗ = a,

and the star property

‖a∗a‖ = ‖a‖2.

A is called commutative, if ab = ba for all a,b ∈ A.

Examples:

• C (K ) - the continuous functions on a compact space K is commutative C∗ algebra.

• L(H), with the regular ∗ operation of adjoints. This is highly non-commutative Ba-

nach algebra.

• the space l 1(Z) = {(xn)n=−∞∞ : ‖x‖ =∑∞
n=−∞ |xn |}, with the regular operations and a

product operation given by z = x.y

zk =
∞∑

n=−∞
xk−n yn .

is a commutative Banach algebra (Check!).

5.11 Continuous functional calculus for self-adjoint operators

The next lemma begins to build the homomorphism ΦA, namely with the polynomials.
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Definition 27. Let A,B be C∗ algebras, and Φ : A → B. We say that Φ is C∗ algebra homo-

morphism, if

Φ(1A) = 1B ,Φ(ab) =Φ(a)Φ(b),Φ(a∗) =Φ(a)∗.

We now start building suchΦ on the algebra of continuous functions on σ(A), C (σ(A)).

5.11.1 The mapΦA on polynomials

Lemma 19. Let H be a complex Hilbert space, A ∈ L(H). For every p(z) =∑n
k=0 ak zk ,

p(A) =
n∑

k=0
ak Ak ∈ L(H)

has the properties

(p +q)(A) = p(A)+q(A), pq(A) = p(A)q(A), p(σ(A)) =σ(p(A)),‖p(A)‖ = sup
λ∈σ(A)

|p(λ)|.

The next technical result is the (general) Stone-Weierstrass theorem.

Theorem 32. (Stone-Weierstrass) Let M be a Hausdorf compact space and A ⊂ C (M) be a

subalgebra, with the following properties

1. 1 ∈ A

2. A separates points on M, i.e. for every x, y ∈ M , x 6= y, there exists f ∈ A, so that

f (x) 6= f (y).

3. A is closed under conjugation, i.e. if f ∈ A, then f̄ ∈ A.

Then, A is dense in C (M).

5.11.2 The construction of the mapΦA : C (Σ) → L(H)

Theorem 33. Let H be a complex Hilbert space, A ∈ L(H) be self-adjoint operator, i.e. A =
A∗. Let Σ=σ(A). Then, there exists a bounded, complex linear operator

ΦA : C (Σ) → L(H), f → f (A),

so that
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• Product ΦA(1) = I d, f g (A) = f (A)g (A).

• Conjugation f̄ (A) = f (A)∗

• Normalization If f (λ) =λ, then f (A) = A

• Isometry ‖ f (A)‖ = supλ∈Σ | f (λ)|

• Commutative If AB = B A, then f (A)B = B f (A) for all f ∈C (Σ).

• Image

A := { f (A) : f ∈C (σ) =∩{B : B C∗al g ebr a ⊂ L(H), A ∈B}

• Eigenvector If Ax =λx, for some λ ∈C and x ∈ H, then f (A)x = f (λ)x.

• Spectrum f (A) is normal for all f ∈C (Σ), σ( f (A)) = f (σ(A)).

• Composition For f ∈C (Σ,R), g ∈C ( f (Σ)), g ◦ f (A) = g ( f (A)).

5.11.3 Square roots

Definition 28. We say that A ∈ L(H) : A = A∗ is positive semi-definite, if 〈Ax, x〉 ≥ 0. We

denote it A ≥ 0.

We have the following theorem.

Theorem 34. Let H be a complex Hilbert space and A = A∗. Let f ∈C (σ(A)). Then,

1. f (A) = f (A)∗ if and only if f (σ(A)) ⊂ R.

2. Assume f (σ(A)) ⊂ R. Then, f (A) ≥ 0 if and only if f ≥ 0.

3. A ≥ 0 if and only if there exists B = B∗, so that A = B 2.

Proof. The proof of 1) is easy, see p. 245. For 2), we have

inf
‖x‖=1

〈 f (A)x, x〉 = infσ( f (A))) = inf f (σ((A))) = inf
λ∈σ(A)

f (λ)
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So, f (λ) ≥ 0 if and only if f (A) ≥ 0.

For 3), assume that A ≥ 0. Then, σ(A) ⊂ [0,∞). Then, consider the function f (λ) =p
λ,

which is well-defined. Then, B := f (A) ∈ L(H). Also, since f 2(λ) =λ,

B 2 = f 2(A) = A.

The reverse direction is easy, since if A = B 2,

〈Ax, x〉 = 〈B 2x, x〉 = 〈B x,B x〉 = ‖B x‖2 ≥ 0.
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A Finite dimensional subspaces of a Banach space

We show that every finite dimensional subspace of a (real) Banach space is isomorphic to

Rn .

Proposition 15. Let X be a real Banach space and x1, . . . , xn be a finite family of linearly

independent vectors in X . Then, Xn = span[x1, . . . , xn] is a Banach space isomorphic to Rn .

In particular,

c‖
n∑

j=1
λ j x j‖X ≤ max

1≤ j≤n
|λ j | ≤C‖

n∑
j=1

λ j x j‖X (14)

B Dual families

Th next Proposition provides the existence of a finite dual family of vectors.

Proposition 16. (see Corollary 2.3.4) Let X be a real Banach space and x1, . . . , xn be a finite

family of linearly independent vectors in X . Then, there exists a family of vectors x∗
1 , . . . , x∗

n ∈
X ∗, so that

〈x∗
j , xi 〉 =

{
1 i = j
0 i 6= j

Remark: This is a generalization of a corollary of Hahn-Banach, which we use fre-

quently. Namely, for every x ∈ X , there is x∗ ∈ X ∗ : ‖x∗‖ = 1, so that 〈x∗, x〉 = ‖x‖, see

Corollary 6. Here, we have a family of vectors, whose norms are unknown, but keep in

mind that it is usually the case that max1≤ j≤n ‖x∗
j ‖X ∗ is growing with n.

C Finite dimensional subspaces/finite co-dimension sub-
space of a Banach space are complemented

The next result is almost an immediate consequence of Proposition 16, see also the con-

struction of K in the proof of Lemma 11.
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Proposition 17. Let X be a Banach space and X0 be a finite dimensional subspace of X .

Then, X0 is complemented. That is, there exists a closed linear subspace Y ⊂ X , so that

X = X0 ⊕Y .

Equivalently, there is a projection operator P : X → X0, i.e. an P 2 = P. Note that Q = I −P

also satisfies Q2 =Q and then, Y = Im(Q).

Let Y be a finite co-dimension subspace of X , i.e. di m(X /Y ) <∞. Then, Y is comple-

mented.

D Small perturbations of invertible operators are still in-
vertible

Lemma 20. Let A : X → Y be bounded and invertible linear operator. Then, there exists

ε= ε(A) so that for each B : X → Y , ‖B‖ < ε, we have that A+B is also invertible.

Remark: In fact, one may take ε= 1
‖A−1‖ .
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