Notes MATH 960

May 11, 2020

1 Chapter I

1.1 Metric and Banach spaces

We start with a few definitions

Definition 1. We say that (X, d) is a metric space, if $d : X \times X \to \mathbf{R}_+$, with the following properties

- 1. $d(x, y) \ge 0$ and d(x, y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. (triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$.

We say that $U \subset X$ is an open set, if for every $x \in U$, there is an $\epsilon > 0$, so that $x \in B_{\epsilon}(x) = \{y \in X : dy, x\} < \epsilon\} \subset U$.

The collection $\tau = \{U \subset X : U - \text{open}\}$ is called a topology on *X*.

Definition 2. We say that the sequence $\{x_n\}_n \subset (X, d)$ is a Cauchy sequence, if for every $\epsilon > 0$, there is N, so that whenever n > m > N, there is $d(x_n, x_m) < \epsilon$. **Note:** Every convergent sequence is Cauchy.

We say that the metric space (X, d) is complete, if every Cauchy sequence is convergent. **Note:** In order to show that a Cauchy sequence is convergent, it suffices to find a convergent subsequence. **Definition 3.** Let X be a vector space, i.e. the operations x + y and ax (where x, y are vectors and a is a scalar) a are well-defined. A function $\|\cdot\|: X \to \mathbf{R}_+$ is called a norm on X, if

- 1. $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0
- 2. ||ax|| = |a|||x||
- 3. (triangle inequality) $||x + y|| \le ||x|| + ||y||$.

A vector space with a norm $(X, \|\cdot\|)$ is called a normed space. A normed space $(X, \|\cdot\|)$, which is complete in the metric $d(x, y) = \|x - y\|$ is called a Banach space.

A few examples:

- $l^p, 1 \le p < \infty$, $l^p = \left\{ x = (x_n)_{n=1}^{\infty} : \|x\| := \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \right\}.$
- For a measure space $(M, d\mu)$, $L^p(M, d\mu)$, $1 \le p < \infty$,

$$L^p(M,d\mu) = \left\{ f: M \to \mathbf{R} : \|f\| := \left(\int_M |f(x)|^p d\mu \right)^{\frac{1}{p}} \right\}.$$

• $L^{\infty}(M, d\mu)$,

$$L^{\infty}(M, d\mu) = \{ f : M \to \mathbf{R} : ||f|| := essup\{|f(x)| : x \in M \}.$$

1.2 Compactness

Definition 4. We say that $K \subset (X, d)$ is compact, if every open cover $K \subset \bigcup_{\alpha} U_{\alpha}$ has a finite subcover, i.e. there exists $\alpha_1, \ldots, \alpha_N$, so that $K \subset \bigcup_{j=1}^N U_{\alpha_j}$.

We say that $K \subset (X, d)$ is sequentially compact, if every sequence $\{x_n\}$ in K has a convergent subsequence converging to $x \in K$. We say that K is precompact, if \overline{K} is compact.

Proposition 1. Let (X, d) be a complete metric space. Then, $K \subset (X, d)$ is compact if and only if K is sequentially compact.

Equivalently, $K \subset (X, d)$ is pre-compact if and only if every sequence $\{x_n\}$ in K has a convergent subsequence.

In specific cases, one can characterize compactness efficiently.

1.2.1 Compacts in $\mathscr{C}(X, \mathbb{C})$

Let (X, d) be a compact metric space. Introduce the space of continuous functions on X

 $\mathcal{C}(X,\mathbb{C}) = \{f: X \to \mathbb{C} : f \text{ is continuous, } \|f\| = \sup_{x \in K} |f(x)|\}.$

Theorem 1. (Arzela-Ascolli)

The subset $K \subset \mathscr{C}(X, \mathbb{C})$ *is pre compact if and only if*

1. K is bounded, i.e.

$$\sup_{f\in K} \|f\| < \infty.$$

2. *K* is equi-continuous. That is, for every $\epsilon > 0$, there exists $\delta > 0$, so that for each $x, x' \in X : d(x, x') < \delta$,

$$\sup_{f\in K}|f(x)-f(x')|<\epsilon.$$

1.2.2 Compacts in c_0 , l^p spaces

Theorem 2. $K \subset l^p$, $1 \le p < \infty$ is pre-compact if and only if

1. K is bounded, i.e.

$$\sup_{x\in K}\|x\|_{l^p}<\infty.$$

2. For every $\epsilon > 0$, there exists N, so that

$$\sup_{x\in K}\sum_{n=N}^{\infty}|x_n|^p<\epsilon.$$

 $K \subset c_0$, 1 is pre-compact if and only if

1. K is bounded, i.e.

$$\sup_{x\in K}\|x\|_{c_0}<\infty.$$

2. For every $\epsilon > 0$, there exists *N*, so that

$$\sup_{x \in K} \sup_{n \ge N} |x_n| < \epsilon.$$

1.3 Bounded linear operators

Definition 5. Let $(X, \|\cdot\|), (Y, \|\cdot\|)$ be normed spaces. A bounded linear operator $A: X \to Y$ is said to be bounded, if $\|Ax\|_Y \le C \|x\|_X$.

Proposition 2. The space $B(X, Y) = \{A : X \rightarrow Y; A - \text{bounded linear operator}\}$ can be made a normed space via the norm

$$||A|| = \sup_{||x||=1} ||Ax|| = \sup_{||x||\neq 0} \frac{||Ax||}{||x||}.$$

Note the inequality $||Ax|| \le ||A|| ||x||$.

1.3.1 Finite dimensional spaces

We say that *X* is finite dimensional, if $X = span[e_1, e_2, ..., e_n]$ and $\{e_j\}_{j=1}^n$ is linearly independent. In such case dim(X) := n.

Theorem 3. All norms on X are equivalent. That is, for any norm ||x|| on X, there is a C > 1, so that $C^{-1}||x|| \le ||x||_1 \le C||x||$, where $||\sum_{j=1}^n \lambda_j e_j||_1 := \sum_{j=1}^n |\lambda_j|$.

In other words, *X* is isomorphic to \mathbf{R}^n or \mathbf{C}^n . Thus, the compactness is the same, so the Heine-Borel theorem holds

Corollary 1. $K \subset X$, with dim(X) = n is compact if and only if

1. K is bounded

2. K is closed.

The next theorem states that this previous result characterizes finite dimensional spaces.

Theorem 4. Let $(X, \|\cdot\|)$ be a normed space. Then, the following are equivalent

- 1. $dim(X) < \infty$
- 2. $B_X = \{x \in X : ||x|| \le 1\}$ is compact.
- 3. $S_X = \{x \in X : ||x|| = 1\}$ is compact.

1.3.2 Quotient spaces

Let $(X, \|\cdot\|)$ be a normed space, $Y \subset X$, Y is a closed subspace. Then, define equivalence relation $x_1 \sim x_2 : x_1 - x_2 \in Y$. This introduces equivalence classes $[x] = \{\tilde{x} \in X : \tilde{x} \sim x\}$.

Lemma 1. The quotient space $X/Y = \{[x] : x \in X\}$ is a normed space, under the norm

$$||[x]|| = \inf_{y \in Y} ||x + y||.$$

Moreover, if X is a Banach space, then X/Y is Banach space as well.

1.4 Dual spaces

Definition 6. For a normed space $(X, \|\cdot\|)$, we say that its dual space is $X^* = L(X, \mathbf{R})$. That is, X^* is the space of continuous linear functionals on X.

Examples:

Hilbert space *H*, with a dot product ⟨*x*, *y*⟩. Its dual space can be identified with itself¹.

¹This is in essence the Riesz representation theorem, see below

• $L^p(M, d\mu), 1 \le p < \infty$. The dual space is $(L^p(M, d\mu))^* = L^q(M, d\mu)$, where $\frac{1}{p} + \frac{1}{q} = 1$. Moreover, every $\Lambda \in (L^p(M, d\mu))^*$ has the form

$$\Lambda f = \int_{M} f g d\mu, g \in L^{q}(M, d\mu), \|\Lambda\|_{(L^{p})^{*}} = \|g\|_{L^{q}}$$

In particular, $(l^p)^* = l^q, 1 \le p < \infty, \ \frac{1}{p} + \frac{1}{q} = 1.$

- $c_0 = \{x = (x_n)_{n=1}^{\infty} : \lim_n x_n = 0, \|x\|_{c_0} = \sup_n |x_n|\}$. Its dual is $c_0^* = l^1$.
- $(l^1)^* = l^\infty$. Note however that $(l^\infty)^* \supseteq l^1$.

1.5 Hilbert spaces

Definition 7. Let *H* be a real vector space. If a bilinear form $\langle \cdot, \cdot \rangle : H \times H \to \mathbf{R}$ has the properties

- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$, if and only if x = 0
- $\langle x, y \rangle = \langle y, x \rangle$

then we say that $\langle \cdot, \cdot \rangle$ is a dot product on H.

In this case define $||x|| := \sqrt{\langle x, x \rangle}$. In order to check it is defining a norm on *H*, we need the following lemma.

Lemma 2. • $|\langle x, y \rangle| \le ||x|| ||y||$ (*Cauchy-Schwartz inequality*)

• $||x + y|| \le ||x|| + ||y||$.

Note that the Hilbert space norm satisfies the parallelogram identity

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}).$$

Theorem 5. (*Riesz representation theorem*)

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. Then for any bounded linear functional Λ on H, there exists an unique $y \in H$, so that $\Lambda x = \langle x, y \rangle$. Moreover, $\|\Lambda\|_{H^*} = \|y\|$. In other words, $H^* = H$.

Definition 8. Let $S \subset H$, H - Hilbert space. Orthogonal complement is

 $S^{\perp} = \{ x \in H : \langle x, y \rangle = 0 \forall y \in S \}.$

Note that S^{\perp} *is always a closed subspace of H.*

Definition 9. We say that a Banach space X is a direct sum of two subspaces $X = Y_1 \oplus Y_2$, if $Y_1 \cap Y_2 = \emptyset$ and $X \subset Y_1 + Y_2 = \{y_1 + y_2 : y_j \in Y_j, j = 1, 2\}.$

Note that in such case, for every $x \in X$, there is unique pair $y_1 \in Y_1, y_2 \in Y_2$, so that $x = y_1 + y_2$.

Proposition 3. Let *H* be a Hilbert space and $E \subset H$ is a subspace of it. Then

 $H = E \oplus E^{\perp}.$

1.6 Baire category theorem

Definition 10. Let (X, d) be a complete metric space. Then,

- A is called nowhere dense, if $Int(\overline{A}) = \emptyset$.
- A is called **meager**, if $A \subset \bigcup_{j=1}^{\infty} A_j$, where A_j are nowhere dense.
- Ω is called **residual**, if Ω^c is meager.

Note that if A is meager, then \overline{A} is also meager. Ω is residual, if $\Omega \supset \bigcap_{j=1}^{\infty} U_j$, where U_j are open and dense. These are called G_{δ} sets.

Theorem 6. (Baire category theorem)

Let (X, d) be a metric space. Let $\{U_j\}_{j=1}^{\infty}$ be a family of open and dense sets. Then $\bigcap_{j=1}^{\infty} U_j$ is a dense set in X.

Corollary 2. Let (X, d) be a metric space. Then,

- If Ω is residual, then Ω is dense.
- $X \neq \bigcup_{j=1}^{\infty} F_j$, where F_j is nowhere dense. Moreover, $Int(\bigcup_{j=1}^{\infty} F_j) = \emptyset$.

The way this is used in practice is as follows: If $X = \bigcup_{j=1}^{\infty} F_j$ and F_j are closed, then there exists j_0 , so that $Int(F_{j_0}) \neq \emptyset$.

2 Chapter II

2.1 Uniform boundedness principle

Theorem 7. (UBP)

Let $(X, \|\cdot\|)$ and $(Y_i, \|\cdot\|_i)$ are Banach spaces, $i \in I$. Suppose that $A_i : X \to Y_i$ are bounded linear operators. Suppose that for every $x \in X$, the orbit $\{A_i x\}$ is bounded. That is $\sup_i \|A_i x\| < \infty$. Then,

$$\sup_i \|A_i\| < \infty.$$

Corollary 3. Suppose that $(X, \|\cdot\|)$ and $(Y_i, \|\cdot\|_i), i \in I$ are Banach spaces. Suppose that $\sup_i \|A_i\| = \infty$. Then, there exists $x \in X$, so that $\sup_{i \in I} \|A_i x\| = \infty$.

Another result, which is very useful in the application is the Banach-Steinhaus theorem.

Theorem 8. (Banach-Steinhaus)

Let X, Y are Banach spaces and $A_n : X \to Y$ is a sequence of bounded linear operators, so that $\lim_n A_n x$ exists for every x. Then

- $\sup_n \|A_n\| < \infty$
- $AX := \lim_{n \to \infty} A_n x$ is a bounded linear operator

2.2 Open mapping theorem

Definition 11. We say that a mapping $f : X \to Y$ is open, if for every open set $U \subset X$, f(U) is open.

Theorem 9. (Open mapping theorem)

Let X, Y are Banach spaces and $T : X \to Y$ is a bounded linear operator, which is onto, i.e. T(X) = Y. Then, T is an open mapping.

One of the main applications is the inverse operator theorem.

Theorem 10. Let X, Y are Banach spaces and $T : X \to Y$ is a bounded linear operator, which is a bijection, i.e. one-to-one and onto Then, the algebraically defined inverse operator $T^{-1}: Y \to X$ is bounded.

Some corollaries are as follows.

Corollary 4. Suppose that X is a Banach space, so that $X = X_1 \oplus X_2$. Then, there exists a constant c, so that for every $x = x_1 + x_2$,

$$||x_1|| + ||x_2|| \le c ||x_1 + x_2||.$$

2.3 Hahn-Banach theorem

Definition 12. Let X be a real vector space. We say that $p: X \to \mathbf{R}$ is a quasi semi-norm, if

- 1. For each $\lambda > 0$, $p(\lambda x) = \lambda p(x)$
- 2. $p(x+y) \le p(x) + p(y)$.

If we have $p(\lambda x) = |\lambda| p(x)$ for each $\lambda \in \mathbf{R}$, we say that p is a semi-norm.

Examples:

- 1. p(x) = ||x||
- 2. For a convex set $K \subset X$, define its Minkowski functional

$$p_K(x) = \inf\{a > 0 : \frac{x}{a} \in K\}.$$

3. On l^{∞} , $p(x) = \limsup_n x_n$.

Theorem 11. (Hahn-Banach theorem)

Let X be a real normed space and $p: X \to \mathbf{R}$ be a quasi semi-norm on it. Let $Y \subset X$ be a linear subspace and $\phi: Y \to \mathbf{R}$ is a linear functional, so that $\phi(y) \leq p(y)$. Then, there exists an extension $\Phi: X \to \mathbf{R}$, so that $\Phi|_Y = \phi$ and $\Phi(x) \leq p(x), x \in X$.

Corollary 5. (Complex version)

Let X be a complex Banach space and $Y \subset X$ be a linear subspace. Let $\psi : Y \to \mathbb{C}$ be a complex linear functional, so that $|\psi(x)| \le c ||x||$. Then, there exists an extension $\Psi : X \to \mathbb{C}$, so that $\Psi|_Y = \psi$ and $|\Psi(x)| \le c ||x||$, $x \in X$.

Lemma 3. (Properties of the Minkowksi functional)

Let X be real topological vector space and $K \subset X$ is a convex set, with $0 \in Int(K)$. Then, its Minkowksi functional

$$p_K(x) = \inf\{a > 0 : \frac{x}{a} \in K\}$$

satisfies $p(\lambda x) = \lambda p(x)$ for each $\lambda > 0$, $p_K(x + y) \le p_K(x) + p_K(y)$.

2.4 Applications of Hahn-Banach theorem

2.4.1 Separation of convex sets

Theorem 12. (Hyperplane separation theorem) Let X be a real topological vector space and $K \subset X$ be convex and open subset. Then, for every $y \notin K$, there exists a linear functional $\Lambda : X \to \mathbf{R}$ and $c \in \mathbf{R}$, so that

$$\sup_{x\in K} \Lambda(x) \le c = \Lambda(y).$$

Theorem 13. (Separation of two convex sets)

Let X be a real topological vector space and $A, B \subset X$ are convex subsets, so that $Int(A) \neq \emptyset$ and $A \cap B = \emptyset$. Then, there exists a linear functional $\Lambda : X \to \mathbf{R}$ and $c \in \mathbf{R}$, so that

$$\sup_{x \in A} \Lambda(x) \le c \le \inf_{y \in B} \Lambda(y)$$

2.4.2 Closure of a linear subspace

For any normed space X and its dual X^* , introduce the notation

$$\langle x, x^* \rangle := x^*(x),$$

to denote the action of x^* on x. Clearly, this allows us to view $x \in X \subset X^{**}$, via the formula $x(x^*) = \langle x, x^* \rangle$.

Definition 13. For any X real normed vector space and any set $S \subset X$, define its annihilator

$$S^{\perp} = \{ x^* \in X^* : \langle s, x^* \rangle = 0, \ \forall s \in S \}.$$

Note: S^{\perp} *is a always a closed linear subspace of* X^* *.*

Theorem 14. Let X be a Banach space, $Y \subset X$ be a linear subspace, so that $x_0 \in X \setminus \overline{Y}$. Then, $\delta = dist(x_0, Y) > 0$ and there exists $x^* \in Y^{\perp}$, so that $||x^*|| = 1$, $x^*(x_0) = \delta$.

Corollary 6. For every $x \in X$, there is an $x^* \in X^*$: $||x^*|| = 1, x^*(x) = ||x||$.

Corollary 7. Let X be a Banach space, $Y \subset X$ be a linear subspace, Then,

$$x \in \overline{Y} \iff \langle x, x^* \rangle = 0, \forall x^* \in Y^{\perp}.$$

One might introduce for every $S \subset X^*$, $S^{\top} = \{x \in X : \langle x, s \rangle = 0, \forall s \in S\}$. In this case, Corollary 7 reads

 $\bar{Y} = (Y^{\perp})^{\top}.$

3 Weak and Weak* topology

Let *X* be a real vector space and \mathscr{F} be a collection of real-valued linear functionals. Define the sets

$$\mathcal{V}_{\mathscr{F}} = \{ \cap_{i=1}^m f_i^{-1}(a_i, b_i) : f_i \in \mathscr{F}, a_i < b_i \}.$$

Lemma 4. The set

$$\mathscr{U}_{\mathscr{F}} = \{ U \subset X : \forall x \in U, \exists V \in \mathscr{V}_{\mathscr{F}}, x \in V \subseteq U \}.$$

is a topology on X. In other words, $\mathcal{V}_{\mathscr{F}}$ is a base for $\mathscr{U}_{\mathscr{F}}$, while the sets $\{f^{-1}(a, b) : f \in \mathscr{F}, a < b\}$ are a sub-base for $\mathscr{U}_{\mathscr{F}}$.

The topology $(X, \mathcal{U}_{\mathscr{F}})$ may be equivalently defined by saying that $x_{\alpha} \to x$ exactly when $f(x_{\alpha}) \to f(x)$ for each $f \in \mathscr{F}$.

3.1 Weak topology on X

Definition 14. (Weak topology on X)

Let X real normed vector space and $\mathscr{F} = X^*$. The corresponding topology (X, \mathscr{U}_{X^*}) is called **weak topology** on X.

Equivalently, x_{α} *tends to x weakly (denoted* $x_{\alpha} \rightarrow x$ *), if for all* $x^* \in X^*$ *,* $x^*(x_{\alpha}) \rightarrow x^*(x)$ *.*

Proposition 4. Weak topology is weaker than the strong topology, i.e. $\mathscr{U}_{X^*} \subset \mathscr{U}_{\|\cdot\|}$. That is, every weakly open set is strongly open. Equivalently, every strongly convergent sequence is weakly convergent, *i.e.*

$$||x_{\alpha} - x|| \to 0 \Longrightarrow x_{\alpha} \to x.$$

Remarks: The generic converse is false.

- In l^p , $1 , <math>e_n \rightarrow 0$, while $||e_n|| = 1$ (Exercise)
- In C[0,1], $f_n \rightarrow f$, if and only if $\sup_n ||f_n||_{C[0,1]} < \infty$ and f_n tends to f point-wise. (Exercise)
- In $l^p, 1 , <math>x^n \to x$ if and only if $\sup_n ||x^n||_{l^p} < \infty$ and $x_k^n \to x_k$ for each k. (Exercise)

Proposition 5. If $\mathscr{U}_{X^*} = \mathscr{U}_{\|\cdot\|}$, then $dim(X) < \infty$.

For example $S = \{x \in X : ||x|| = 1\}$ is always norm closed, if $dim(X) = \infty$, one has that S is not weakly closed, since 0 is in the weak closure of S. That is, if $dim(X) = \infty$, there is $x_{\alpha} : ||x_{\alpha}|| = 1$, so that $x_{\alpha} \rightarrow 0$.

The next result makes Proposition 5 ever more puzzling.

Theorem 15. (Shur's theorem)

In l^1 , $\lim_n ||x^n - x||_{l^1} = 0$ if and only if $x_n \rightarrow x$.

Note: Why is this not a contradiction with Proposition 5?

3.2 Weak * topology on X^*

Definition 15. (*Weak** topology on X^*)

Let X real normed vector space, consider X^* and $\mathcal{F} = X$. The corresponding topology (X^*, \mathcal{U}_X) is called **weak*** topology on X^* .

Equivalently, x_{α}^* *tends to* x^* *weak** *(denoted* $x_{\alpha}^* \rightarrow x^*$ *), if for all* $x \in X$, $\langle x_{\alpha}^*, x \rangle \rightarrow \langle x^*, x \rangle$.

Remark: If X is reflexive², then weak and weak * topologies on X^* coincide.

Proposition 6. On X^* , the weak* topology, (X^*, \mathcal{U}_X) is weaker than the weak topology $(X^*, \mathcal{U}_{X^{**}})$, which is weaker than the norm topology.

Proposition 7. Let X be a normed space and $K \subseteq X$ is a convex subset. Then K is closed if and only if K is weakly closed.

Lemma 5. (Mazur's lemma)

Let X be a normed space and $x_n \rightarrow x$ *. Then,* $x \in \overline{conv\{x_n\}}$ *. Equivalently, for all* $\epsilon > 0$ *, there exists* $N, \lambda_1 \ge 0, ..., \lambda_N \ge 0$: $\sum_{j=1}^N \lambda_j = 1$ *, so that* $\|x - \sum_{j=1}^N \lambda_j x_j\|_X < \epsilon$ *.*

Lemma 6. Let $x_n \rightarrow x$ or $x_n \rightarrow x$. Then, $\sup_n ||x_n|| < \infty$ and

$$\|x\| \le \liminf_n \|x_n\|.$$

For Hilbert spaces or more generally locally convex spaces, there is the partial reverse as follows.

Proposition 8. Let X - Hilbert space or more generally locally convex space³. The following are equivalent.

- 1. $x_n \rightarrow x$ and $\lim_n ||x_n|| = ||x||$.
- 2. $\lim_{n \to \infty} \|x_n x\|_X = 0.$

³It turns out that these are always reflexive so the weak and weak* topologies coincide

²which happens exactly when X^* is reflexive

3.3 Banach-Alaoglu's theorem

Here is a version of the Banach-Alaoglu's theorem, which is particularly useful in the applications.

Theorem 16. Assume that X is a separable Banach space. Then, every bounded sequence in X^* has a weak* convergent subsequence. In other words, every bounded set is weak* pre-compact⁴.

The full theorem is as follows.

Theorem 17. (Banach-Alaoglu's theorem)

The unit ball B_{X^*} is weak* compact. In other words, (B_{X^*}, \mathcal{U}_X) is compact.

Remark: The theorem fails for the weak topology, unless the weak* topology coincides with the weak topology. In fact $(B_{X^*}, \mathcal{U}_{X^{**}})$ is compact if and only if *X* is reflexive if and only if *X*^{*} is reflexive.

4 Fredholm theory

Definition 16. Let X, Y be normed spaces and $A : X \to Y$ be a bounded linear operator. Define $A^* : Y^* \to X^*$ by the assignment

$$\langle A^* y^*, x \rangle = \langle y^*, Ax \rangle$$

We use the

Lemma 7. Let $A : X \to Y$ is a bounded linear operator. Then, $A^* \in B(Y^*, X^*)$ and $||A^*|| = ||A||$.

Lemma 8. Let $A: X \to Y$, $B: Y \to Z$. Then $(BA)^* = A^*B^*$ and $I^* = I$.

⁴Technically speaking, the claim is about weak* sequential pre-compactness. In view of the assumption that X is separable, these two notions are the same.

Examples:

1. $A \in M_{n \times m}, A : \mathbf{R}^m \to \mathbf{R}^n, A = (a_{ij})_{1 \le i \le n, 1 \le j \le m},$

$$(Ax)_i = \sum_{j=1}^m a_{ij} x_j.$$

 $A^t = (a_{iji})_{1 \le i \le n, 1 \le j \le m}, A^t : \mathbf{R}^n \to \mathbf{R}^m.$

2. $A: l^2 \to l^2$, $(Ax)_n = x_{n+1}, n = 1, ...$ Then, $(A^* y)_1 = 0, (A^* y)_n = y_{n-1}, n = 2, ...$

Theorem 18. Let $A: X \to Y$. Then,

- 1. $Im(A)^{\perp} = Ker(A^*)$
- 2. $\perp Im(A^*) = Ker(A)$
- 3. A has dense range if and only if A^* is injective.

Note that if Im(A) is closed, then $Im(A) = {}^{\perp} Im(A)^{\perp} = Ker(A^*)^{\perp}$.

Example: $A: l^2 \to l^2$, $(Ax)_n = \frac{x_n}{n}$ is bounded operator, with dense image, but $Im(A) \subsetneq l^2$.

Lemma 9. Let $A: X \to Y$, $x^* \in X^*$. Then, the following are equivalent (TFAE)

- 1. $x^* \in Im(A^*)$
- 2. There exists c > 0, so that for each $x \in X$,

$$|\langle x^*, x \rangle| \le c \|Ax\|_Y.$$

4.1 Algebraic factorization of maps through invertible maps

Let *X*, *Y* be vector spaces and $A: X \to Y$ be linear map. Not all maps are (algebraically) invertible, in fact *A* must be injective and surjective in order to be invertible.

Introduce $\pi : X \to X_0 := X/Ker(A)$, defined $\pi(x) = [x]$ (where $[x_1] = [x_2]$ if $x_1 - x_2 \in Ker(A)$). Then, one can define $A_0 : X_0 \to Y$.

$$A_0([x]) := Ax.$$

Clearly, this definition is independent on the representative. Also, $A_0 : X_0 \to Y_0 := Im(A)$. Such a map is clearly invertible (A_0 has $Ker(A_0) = \{0\}$, and $Im(A_0) = Im(A) = Y_0$). Furthermore, the inclusion $Y_0 = Im(A) \subseteq Y$ is denoted by *i*. So, one can factorize $A = i \circ A_0 \circ \pi$.

Question: When is such a map A_0 continuous? When is its inverse continuous? What does it mean in terms of estimates?

The following proposition provides the answers.

Proposition 9. Let X, Y be vector spaces and $A: X \to Y$ be linear map. Then, one has the factorization

$$A=i\circ A_0\circ\pi.$$

where $A_0: X/Ker(A) \rightarrow Im(A)$ is invertible.

Suppose now that X, Y are normed vector spaces. If A is bounded, then $A_0: X_0 \to Y_0$ is bounded as well and

$$\|A_0\|_{B(X_0,Y_0)} = \sup_{x \in X} \frac{\|A(x)\|_Y}{\inf_{\xi \in Ker(A)} \|x + \xi\|_X} \le \|A\|_{B(X,Y)}.$$

Theorem 19. (Closed Image Theorem)

Let $A: X \to Y$ be bounded linear map, $A^*: Y^* \to X^*$. TFAE

- 1. $Im(A) = {}^{\perp} Ker(A^*)$.
- 2. Im(A) is closed.
- 3. there exists c > 0, so that for all $x \in X$,

$$\inf_{\xi \in Ker(A)} \|x + \xi\|_X \le c \|Ax\|_Y.$$
(1)

4. $Im(A^*) = Ker(A)^{\perp}$

- 5. $Im(A^*)$ is closed.
- 6. there exists c > 0, so that for all $x^* \in X^*$,

$$\inf_{\xi^* \in Ker(A^*)} \|x^* + \xi^*\|_{X^*} \le c \|A^* x\|_{Y^*}.$$

Remark: These are all equivalent to $A_0: X_0 \rightarrow Y_0$ has bounded inverse.

4.2 Some important corollaries from the Closed Image Theorem

Proposition 10. (see Corollary 4.1.17/page 172)

Let $A: X \to Y$, X, Y-Banach. Then

• A is surjective if and only if A^* is injective and $Im(A^*)$ is closed. Equivalently,

$$\|y^*\|_{Y^*} \le c \|A^* y^*\|_{X^*}.$$
(2)

• A^{*} is surjective if and only if A is injective and Im(A) is closed. Equivalently,

$$\|x\|_{X} \le c \|Ax\|_{Y}.$$
 (3)

A simple consequence is

Corollary 8. Let $A: X \to Y$ be a bounded linear operator. Then, A is a bijection if and only if A^* is a bijection.

4.3 Compact operators

Definition 17. We say that $K : X \to Y$ is **compact operator**, if $K(B_X)$ is precompact. Equivalently, for every bounded sequence x_n , $\{Kx_n\}$ has a convergent subsequence. In particular, K is bounded.

A bounded operator $A: X \to Y$ is called a **finite rank operator**, if $dim(Im(A)) < \infty$. Note that each finite rank operator is compact.

Lemma 10. (Lemma 4.2.3/page 174)

Let $K : X \to Y$ *be compact. Then, if* $x_n \to x$ *, then* $\lim_n ||Kx_n - Kx|| = 0$.

Exercise: Show that *A* is finite rank if and only if there exists $x_1^*, \ldots, x_N^* \in X^*$ and $y_1, \ldots, y_N \in Y$, so that $A = \sum_{j=1}^N x_j^* \otimes y_j$ or

$$Ax = \sum_{j=1}^{N} \langle x_j^*, x \rangle y_j$$

Also, check the exercises/examples on page 175.

Theorem 20. (Theorem 4.2.10/page 175) We have the following.

- 1. Let $A : X \to Y$ and $B : Y \to Z$ be both bounded. If one of them is compact, then $BA : X \to Z$ is compact as well.
- 2. $K_n: X \to Y$ are compact and $\lim_n ||K_n K|| = 0$. Then, K is compact as well.
- 3. *K* is compact if and only if K^* is compact.

4.4 Fredholm operators

Definition 18. Let $A: X \to Y$ be a bounded linear operator. As usual

$$Ker(A) = \{x : Ax = 0\} \subset X; Im(A) = \{Ax : x \in X\} \subseteq Y, coKer(A) := Y/Im(A).$$

If Im(A) is a closed subspace, then coKer(A) is a Banach space.

A is Fredholm, if $dim(Ker(A)) < \infty$, $dim(CoKer(A)) < \infty$. In this case, we introduce its index

$$ind(A) = dim(Ker(A)) - dim(CoKer(A)).$$

Examples:

1. If dim(X), $dim(Y) < \infty$, then any $A: X \to Y$ is Fredholm and

$$ind(A) = dim(X) - dim(Y)$$

For $X = Y = \mathbf{R}^n$ and $A \in M_{n,n}$, this says ind(A) = 0. This is the rank-nullity theorem (i.e. dim(Ker(A)) + dim(Im(A)) = n) in disguise. Why?

2. if $A: X \to Y$ is a bijection, then ind(A) = 0.

Next is the duality theorem, which states that Fredholmness if preserved under taking adjoints.

Theorem 21. Let $A: X \to Y$ is bounded operator. Then,

• If A, A* have closed images, then

 $dim(Ker(A^*)) = dim(CoKer(A)), dim(CoKer(A^*)) = dim(Ker(A)).$

• A is Fredholm if and only if A^{*} is Fredholm. In that case,

$$ind(A) = -ind(A^*).$$

4.5 Some motivations

The first one is about matrices and a basic question in linear algebra. Let $A \in M_{m,n}$, so that $A : \mathbf{R}^n \to \mathbf{R}^m$, everything is real.

Question: When is the following linear equation

$$Ax = b, x \in \mathbf{R}^n, b \in \mathbf{R}^m \tag{4}$$

solvable? This is clearly solvable if and only if $b \in Im(A)$. In finite dimensions, all subspaces are closed, so we can use Theorem 20 to say $Im(A) = Ker(A^*)^{\perp}$. So, (4) is solvable if and only if $b \perp Ker(A^*)$. More specifically, we proved

Proposition 11. The equation (4) is solvable if and only if $b \perp Ker(A^*)$. In particular, if $Ker(A^*) = \{0\}$, then (4) is solvable for each $b \in \mathbf{R}^m$.

The other example is more sophisticated and it involves operator equations in the form

$$(Id - K)f = g, (5)$$

where $K : X \to X$ is a **compact operator**, *X* is a Banach spaces. We will show later that such operators are Fredholm of index zero. In particular, Im(I - K) is closed. So,

Proposition 12. The equation (5) is solvable if and only if $g \perp Ker(I-K^*)$. If $Ker(I-K^*) = \{0\}$, then (5) is uniquely solvable.

Proof. Again, Im(I-K) is closed and so, $Im(I-K) = Ker(I-K^*)^{\perp}$. If $Ker(I-K^*) = \{0\}$, then Im(I-K) = X, whence $CoKer(I-K) = \{0\}$, so codim(I-K) = 0. Since ind(I-K) = 0, it follows that dim(Ker(I-K)) = 0, so $Ker(I-K) = \{0\}$. It follows that I - K is a bijection and (5) is uniquely solvable.

The results in Propositions Propositions 11 and 12, are typical to what is referred to as Fredholm alternatives.

Example: Let $K : [0,1] \times [0,1] \rightarrow \mathscr{C}$ is a continuous function. Then, the operator

$$\mathcal{K}f(x) = \int_0^1 K(x, y)f(y)dy : L^2[0, 1] \to L^2[0, 1]$$

is compact. Thus, an equation in the form⁵

$$\lambda f(x) - \int_0^1 K(x, y) f(y) \, dy = g(x), \tag{6}$$

where $\lambda \in \mathcal{C}$ and $g \in L^2[0,1]$ has an unique solution if and only if $Ker(\bar{\lambda} - \mathcal{K}^*) = \{0\}$ or

$$\bar{\lambda}z(x) = \int_0^1 \bar{K}(y,x)z(y)dy,$$

has no solutions $z \in L^2[0,1]$. Why? Note the reversed role of $(x, y) \rightarrow (y, x)$, this is not a typo.

4.6 Characterization of Fredholm operators

We start with an important lemma in the theory, which may be of independent interest.

Lemma 11. (Lemma 4.3.9) Let $D: X \to Y$, X, Y are Banach spaces.

Then, D has a finite dimensional kernel and closed image if and only if there exists a Banach space Z and a compact operator $K: X \to Z$, so that

$$\|x\|_{X} \le c(\|Dx\|_{Y} + \|Kx\|_{Z}).$$
(7)

⁵This is a toy version of something that appears very frequently in PDE theory!

Here is the characterization of the Fredholmness. Roughly speaking, Fredholm operators are those that are invertible modulo compacts. *Note the typo in the book, the partial inverse F, must be* $F: Y \rightarrow X$ *instead of* $F: X \rightarrow Y$.

Theorem 22. (*Theorem 4.3.8*)

Let $A: X \to Y$ be a bounded linear operator, X, Y are Banach spaces. Then, the following are equivalent.

- 1. A is Fredholm
- 2. There exists a bounded linear operator $F: Y \to X$, so that $Id_X FA: X \to X$, $Id_Y AF: Y \to Y$ are both compacts.

Comments:

- 1. From the proof, it is clear that it is enough to assume that there are two (maybe different ones), $F_1, F_2 : Y \to X$, so that $I_X F_1 A$ and $Id_Y AF_2$ are compacts. This is sometimes useful.
- 2. By Theorem 20, $K(X) = \{K : X \to X, K \text{compact}\}$ is a closed, two side ideal, in the algebra B(X). Thus, one may define the Calkin algebra

$$L(X) = B(X)/K(X),$$

In it, one may state the theorem as follows A is Fredholm if and only if [A] is invertible in the Calkin algebra (with inverse [F] as in the theorem).

3. For every compact operator $K : X \to X$, operators of the type $Id - K : X \to X$ is Fredholm. Just apply the theorem with F = Id.

Exercise: If $B : X \to X$ is invertible and $K : X \to X$ is compact, then B - K is Fredholm. The main focus this week is on how to compute the index.

4.7 Composition of Fredholm operators

Theorem 23. (*Theorem 4.4.1*) Let $A : X \to Y$ and $B : Y \to Z$ are both Fredholm. Then, $BA : X \to Z$ is Fredholm and

$$ind(BA) = index(A) + ind(B)$$

4.8 Stability of the Freholm index

The following result is a basic result in the theory, stating that a small (in norm) perturbation does not change the index and neither does perturbation by compact (even it is a large compact operator).

Theorem 24. (*Theorem 4.4.2*) Let $D: X \to Y$ is Fredholm. Then

1. If $K: X \rightarrow Y$ is compact, then D + K is Fredholm and

ind(D+K) = ind(D)

In other words, adding compact to a Fredholm preserves the Fredholmness and keeps the index unchanged.

2. There exists a constant $\epsilon > 0$, so that whenever $P : X \to Y$ is a bounded operator, $||P|| < \epsilon$, then D + P is Fredholm and ind(D + P) = ind(D).

In other words, the Fredholm operators are an open set in the space of bounded operators B(X, Y) and $ind : Fredholm \rightarrow \mathbb{N}$ is locally a constant. In fact,

Fredholms =
$$\cup_{n \in \mathbb{Z}} \Omega_n$$
,

where each set $\Omega_n = \{A : X \to Y, ind(A) = n\}$ is a component in the set of Fredholm operators.

4.9 Applications

Immediately from the previous results, for each $K : X \to X$ compact, we have ind(I+K) = ind(I) = 0.

Theorem 25. Let $K: X \to X$ be a compact operator. Then, for each $\lambda \in \mathbb{C}, \lambda \neq 0$,

- 1. $dim(Ker(\lambda K)) < \infty$.
- 2. $dim(Ker(\lambda K)) = dim(Ker(\lambda K^*))$
- 3. Suppose $Ker(\lambda K) = \{0\}$. Then, $(\lambda Id K)$ is invertible.
- 4. (Fredholm alternative) The equation

$$(\lambda - K)f = g, f, g \in X \tag{8}$$

has solutions if and only if $g \perp Ker(\lambda - K^*)$. More specifically, If $Ker(\lambda - K) = \{0\}$, then (8) is uniquely solvable, in fact $f = (\lambda - K)^{-1}g$.

If $Ker(\lambda - K) \neq \{0\}$, let $n = dim(Ker(\lambda - K)) \ge 1$. There exist $x_1, \dots, x_n \in X$, a basis of $Ker(\lambda - K)$ and $x_1^*, \dots, x_n^* \in X^*$ a basis of $Ker(\lambda - K^*)$, so that (8) has solutions if and only if $\langle x_j^*, g \rangle = 0$. If this is satisfied, $g \in Im(\lambda - K)$, $(\lambda - K) : X \to Im(\lambda - K)$ is invertible and the general solution of (8) is in the form

$$f = (\lambda - K)^{-1}g + \sum_{j=1}^{n} \mu_j x_j.$$

Remark: The condition $\lambda \neq 0$ is crucial. The theorem fails for $\lambda = 0$.

5 Spectral theory

The first part is section 5.1 in the book (pages 198-202), which introduces the concept of a Banach space over the complex numbers. I have mentioned several times how various things work in that case. Bottom line is that all the theorems remain the same, including property of norms, linear functionals, Hahn-Banach⁶, open mapping theorem, closed graph theorem, inverse function theorem, Banach-Alaoglu theorem, Fredholm theory. I recommend you read these pages on your own.

⁶which needs a little extension from the real case, which I mentioned about in class

5.1 Integration

We investigate the following:

Question: How does one integrate Banach space valued (*B* - valued) functions? How much regularity does one need and what it means for *B* - valued functions?

A class that will be enough for our purposes is continuous functions, although there is a notion of Riemann/Lebesgue integrable *B* - valued functions.

Lemma 12. (Integration of continuous functions, page 202) Let X be a Banach space (real or complex) and $x : [a, b] \to X$ be a continuous B - valued function. Then, there exists an unique $\xi \in X$, so that " $\xi = \int_a^b x(t) dt$ ". Formally, for every $x^* \in X^*$,

$$\langle x^*,\xi\rangle = \int_a^b \langle x^*,x(t)\rangle dt.$$

The approach above is very common in how one passes from *B* - space valued functions to "regular" scalar valued functions. The next lemma is a prime example.

Lemma 13. Let X be a Banach space (real or complex), $x, y : [a, b] \rightarrow X$ are continuous B - valued functions. Then,

1. (Linearity of the integral)

$$\int_a^b (x(t) + cy(t))dt = \int_a^b x(t)dt + c\int_a^b y(t)dt.$$

2. For a < *c* < *b*,

$$\int_{a}^{b} x(t)dt = \int_{a}^{c} x(t)dt + \int_{c}^{b} x(t)dt$$

3. Let $A: X \to Y$ be bounded linear operator, then

$$A\int_{a}^{b} x(t)dt = \int_{a}^{b} Ax(t)dt.$$

4. (Fundamental theorem of calculus)

Let $x : [a, b] \to X$ be continuously differentiable, i.e. there is a continuous B - valued function g(t), so that $\lim_{h\to 0} \|\frac{x(t+h)-x(t)}{h} - g(t)\| = 0$ (and then $\dot{x}(t) = g(t)$). Then,

$$\int_{a}^{b} \dot{x}(t) dt = x(b) - x(a).$$

5. (change of variables formula)

Let ϕ : $[\alpha, \beta] \rightarrow [a, b]$ be a differentiable and invertible transformation. Then

$$\int_{a}^{b} \dot{x}(t) dt = \int_{\alpha}^{\beta} x(\phi(s)) \phi'(s) ds.$$

6. (Triangle inequality for integrals)

$$\|\int_{a}^{b} x(t)dt\| \le \int_{a}^{b} \|x(t)\|dt$$

7. If

$$x(t) = x_0 + \int_a^t y(s) ds,$$

then x is continuously differentiable with $\dot{x}(t) = y(t)$.

Next topic is holomorphic *B* valued functions.

5.2 Holomorphic functions

Definition 19. Let $\Omega \subset \mathbb{C}$ be an open set, X is a complex Banach space, $f : \Omega \to X$ is contin*uous. We say that* f *is holomorphic, denoted* $H(\Omega)$ *, if*

$$f'(z) := \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} \in X,$$

exists and $f': \Omega \to X$ is continuous function.

Let γ be a C^1 curve in Ω , i.e. $\gamma : [a, b] \to \Omega$, $\gamma \in C^1(a, b) \cap C[a, b]$. Then,

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(s)) \gamma'(s) ds.$$

It is tempting to ask:

Question: Is it true that *f* is *B* valued holomorphic function if and only if $z \to \langle x^*, f(z) \rangle$ is (scalar) holomorphic for each $x^* \in X^*$

The next lemma shows that and it is in fact more general.

Lemma 14. Let $\Omega \subset \mathbb{C}$ be an open set, X, Y are complex Banach spaces and $A: \Omega \to L(X, Y)$ is a weakly continuous function, i.e. for each $x \in X, y^* \in Y^*, z \to \langle y^*, A(z)x \rangle$ is continuous function.

Then, the following are equivalent:

- 1. A is holomorphic.
- 2. For each $x \in X$, $y^* \in Y^*$,

$$z \to \langle y^*, A(z)x \rangle$$

is holomorphic on Ω .

3. (*Cauchy theorem*) For each $z_0 \in \Omega$ and $r_0 > 0$, so that $\overline{B_r(z_0)} \subset \Omega$,

$$\langle y^*, A(\omega)x \rangle = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{\langle y^*, A(z)x \rangle}{z-\omega} dz, \tag{9}$$

for each $r : 0 < r < r_0$ *and* $\omega : |\omega - z_0| < r$.

Remarks:

- Formula (9) may be generalized to closed curves of index one around z_0 .
- If you apply this to the mapping A(z) = f(z)x*, where f: Ω → Y and x* is arbitrary non-zero element of X*, we obtain that f: Ω → Y is holomorphic if and only if f is weakly holomorphic, i.e. for every y* ∈ Y*, z → ⟨y*, f(z)⟩ is holomorphic. Also, applying (9) to this, we obtain the Cauchy formula

$$f(\omega) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{z-\omega} dz.$$
 (10)

Some exercises that are good results.

Proposition 13. Let X be a Banach space, $f : \Omega \to X$ be holomorphic. Then,

1. $f': \Omega \to X$ is also holomorphic.

2.

$$f^{(n)}(\omega) = \frac{n!}{2\pi i} \int_{|z-z_0|=r} \frac{f(z)}{(z-\omega)^{n+1}} dz.$$
 (11)

3. Let $\{a_n\}_n$ is a sequence of elements in X. Suppose that $\limsup_{n\to\infty} ||a_n||^{\frac{1}{n}} < \infty$, so that

$$\rho := \frac{1}{\limsup_{n \to \infty} \|a_n\|^{\frac{1}{n}}} > 0.$$

Then, the formula

$$f(z) := \sum_{n=0}^{\infty} a_n z^n,$$

defines a B valued function on the domain $B_{\rho}(0) \subset \mathbb{C}$. Also,

$$a_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz, r < \rho.$$

The function that we really want to consider is, for $A \in L(X)$, the operator valued function $z \to (z - A)^{-1}$, whenever it exists. This is called resolvent set $\rho(A)$, which happens to be open subset of \mathbb{C} . It is also the complement of the spectrum $\sigma(A)$.

5.3 Spectrum

Definition 20. Let X be a complex Banach space and $A \in L(X)$ be bounded linear operator. **The spectrum** *is introduced as follows*

 $\sigma(A) = \{\lambda \in \mathbb{C} : (\lambda - A) \text{ is not bijective/invertible} \}$

Equivalently the resolvent set $\rho(A) = \mathbb{C} \setminus \sigma(A)$ can be defined independently as

 $\rho(A) = \{\lambda \in \mathbb{C} : (\lambda - A) \text{ is bijective/invertible} \}$

Question: What are the reasons for $\lambda - A$ not to be invertible? It is either not injective or not surjective or both. We then subgroup them in two distinct/disjoint subgroups as follows - it is either *A*) not injective, or *B*) it is injective, but not surjective.

You can further group them in three distinct major groups(but be aware that there are other ways to group them, which makes it so confusing!) - basically group *B* is split in additional two groups. More specifically:

1. Non-trivial kernel - $Ker(\lambda - A) \neq \{0\}$, i.e. $\lambda - A$ is not injective.

2.
$$Ker(\lambda - A) = \{0\}$$
, but $Im(\lambda - A)$ is not dense in *X*.

3. $Ker(\lambda - A) = \{0\}, Im(\lambda - A)$ is dense in *X*, but $Im(\lambda - A) \neq X = \overline{Im(\lambda - A)}$.

The reasons for this split are historical and are partially motivated by the stability of these parts of the spectrum under perturbations.

Eventually $\sigma(A) = P\sigma(A) \cup R\sigma(A) \cup C\sigma(A)$, as follows.

Definition 21. • Point spectrum - $\lambda - A$ is not injective or $Ker(\lambda - A) \neq \{0\}$.

$$P\sigma(A) = \{\lambda \in \mathbb{C} : Ker(\lambda - A) \neq \{0\}\}.$$

• **Residual spectrum** $Ker(\lambda - A) = \{0\}$, but $Im(\lambda - A)$ is not dense in X.

$$R\sigma(A) = \{\lambda \in \mathbb{C} : Ker(\lambda - A) = \{0\}, Im(\lambda - A) \neq X\}.$$

• Continuous spectrum $Ker(\lambda - A) = \{0\}, \overline{Im(\lambda - A)} = X$, but the image is not closed, or $Im(\lambda - A) \neq \overline{Im(\lambda - A)} = X$.

$$C\sigma(A) = \{\lambda \in \mathbb{C} : Ker(\lambda - A) = \{0\}, Im(\lambda - A) \neq Im(\lambda - A) = X\}.$$

Remarks:

• In finite dimensions $A: X \to X$, dim(X) = n, $\sigma(A) = P\sigma(A)$, while $R\sigma(A) = C\sigma(A) = \phi$. Moreover, $\sigma(A)$ is a finite set

$$\#\sigma(A) \le n$$

This is just the fact that a matrix $\lambda - A$ is non-invertible if and only if det $(\lambda - A) = 0$. λ is then called an eigenvalue. In this case,

$$\sigma(A) = \{\lambda : \det(\lambda - A) = 0\}, \#\sigma(A) = n,$$

if one counts eigenvalues with respective multiplicity.

• $X = l^2$. For the shift operators $A, B : l^2 \rightarrow l^2$ defined by $Ax = (x_2, x_3, ...), Bx = (0, x_1, ...),$ we have

$$\sigma(A) = \{\lambda : |\lambda| \le 1\}, P\sigma(A) = \{\lambda : |\lambda| < 1\}, R\sigma(A) = \emptyset, C\sigma(A) = \{\lambda : |\lambda| = 1\}$$

$$\sigma(B) = \{\lambda : |\lambda| \le 1\}, P\sigma(B) = \emptyset, R\sigma(B) = \{\lambda : |\lambda| < 1\}, C\sigma(B) = \{\lambda : |\lambda| = 1\}$$

Remark: For *A*, eigenvectors are $x_{\lambda} = (\lambda, \lambda^2, ...), |\lambda| < 1$, so that $Ax_{\lambda} = \lambda x_{\lambda}$. For *B*, clearly $(\lambda - B)x = 0$ implies x = 0.

Lemma 15. Let $A : X \to X$ be a bounded linear operator, $A^* : X^* \to X^*$ is the dual operator. Then

- $\sigma(A)$ is a compact subspace of \mathbb{C}
- $\sigma(A^*) = \sigma(A)$

$$P\sigma(A^*) \subset P\sigma(A) \cup R\sigma(A), R\sigma(A^*) \subset P\sigma(A) \cup C\sigma(A), C\sigma(A^*) \subset C\sigma(A)$$
$$P\sigma(A) \subset P\sigma(A^*) \cup R\sigma(A^*), R\sigma(A) \subset P\sigma(A^*), C\sigma(A) \subset R\sigma(A^*) \cup C\sigma(A^*).$$

Proof. For the boundedness of $\sigma(A)$, we show that $\sigma(A) \subset \{\lambda : |\lambda| \le ||A||\}$. Indeed, let $\lambda : |\lambda| > ||A||$. Then,

$$\lambda - A = \lambda (I - \lambda^{-1} A).$$

Since $\|\lambda^{-1}A\| = \frac{\|A\|}{|\lambda|} < 1$, the operator $(I - \lambda^{-1}A)$ is invertible by von Neumann, see Lemma 20. It remains to show that $\sigma(A)$ is closed. It is equivalent to show that $\rho(A)$ is open. This is again Lemma 20. Indeed, let $\lambda_0 \in \rho(A)$. Then, for all $\lambda : |\lambda - \lambda_0| \le \frac{1}{\|(\lambda_0 - A)^{-1}\|}$, we have by Lemma 20 that

$$\lambda - A = (\lambda - \lambda_0) + (\lambda_0 - A) = (\lambda_0 - A)(I + (\lambda - \lambda_0)(\lambda_0 - A)^{-1})$$

Again, by von Neumann, if $\|(\lambda - \lambda_0)(\lambda_0 - A)^{-1}\| < 1$, we have invertibility of $\lambda - A$, so $\rho(A)$ is an open set.

2) follows from Corollary 8, which states that $\lambda \in \rho(A)$ if and only if $\lambda - A$ is bijection, if and only if $\lambda - A^*$ is a bijection if and only if $\lambda \in \rho(A^*)$.

Next, we discuss the resolvent of *A*, whenever it is defined.

Lemma 16. Let X be a complex Banach space and $A \in B(X)$. Then $\rho(A)$ is an open set and define, for $\lambda \in \rho(A)$,

$$R_{\lambda}(A) := (\lambda - A)^{-1}$$

Then $R : \rho(A) \to B(X)$ is a holomorphic B(X) valued mapping, which satisfies the resolvent identity

$$R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A), \lambda, \mu \in \rho(A).$$
(12)

In particular, its complex derivative satisfies

$$R'(\lambda) = -R_{\lambda}(A)^2.$$

Remark: Note that the resolvents commute, i.e. $R_{\lambda}(A)R_{\mu}(A) = R_{\mu}(A)R_{\lambda}(A)$, if we apply (12) with μ instead of λ and λ instead of μ .

We first establish basic properties of spectra.

5.4 Spetral radius formula

We first define spectral radius.

Definition 22. For a bounded operator $A \in L(X)$, define its spectral radius

$$r_A := \inf \left\{ \mu > 0 : \sigma(A) \subset \{z : |z| < \mu\} \right\} = \sup_{\lambda \in \sigma(A)} |\lambda| \ge 0.$$

Theorem 26. Let X be non-trivial complex Banach space and $A \in L(X)$. Then, $\sigma(A)$ is non-empty and

$$r_A = \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}}.$$

Remark: Part of the claim is that the limit $\lim_{n\to\infty} ||A^n||^{\frac{1}{n}}$ exists.

5.5 Spectrum of compact operators

Most of the stuff here is already contained in Theorem 25, but some of the notions come up for more general operators. Clearly,

$$Ker((\lambda I - A)) \subseteq Ker((\lambda I - A)^2) \subseteq ... \subseteq Ker((\lambda I - A)^k) \subseteq Ker((\lambda I - A)^{k+1}) \subseteq ...$$

Here, the elements $Ker((\lambda I - A))$ are called eigenvectors, while the elements of $Ker((\lambda I - A)^2)$ are all elements, which are either eigenvectors or (first generations) adjoint eigenvectors. Think Jordan normal forms

$$J = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right),$$

so that $e_1 \in Ker(\lambda - J)$, while $e_2 \in Ker((\lambda - J)^2) \setminus Ker(\lambda - J)$ and so on. *The generalized eigenspace* is

$$E_{\lambda}(A) = \bigcup_{k=1}^{\infty} Ker((\lambda I - A)^k).$$

If $Ker((\lambda I - A)^k) = Ker((\lambda I - A)^{k+1})$, we say that it stabilizes and in fact $E_{\lambda} = Ker((\lambda I - A)^k)$. This does not have to happen for general A!

Theorem 27. (Spectrum of compact operators) Let X be a complex Banach space and A is a compact operator on it. Then, $\sigma(A) \setminus \{0\} \subset P\sigma(A)$ and

1. For any $\lambda \in \sigma(K) \setminus \{0\}$, $dim(E_{\lambda}) < \infty$ and in fact there exists m, so that

$$Ker((\lambda I - A)^m) = Ker((\lambda I - A)^{m+1})$$

In such a case, $E_{\lambda}(A) = Ker((\lambda I - A)^m)$ and

$$X = E_{\lambda} \oplus Im((\lambda I - A)^m).$$
⁽¹³⁾

2. Every non-zero eigenvalue is an isolated point in $\sigma(A)$.

5.6 Holomorphic functional calculus

We would like to define $f(A) \in L(X)$ for every holomorphic function f defined on Ω , which contains $\sigma(A)$.

Definition 23. For every curve $\gamma \subset \Omega$, so that $\sigma(A) \subset Int(\gamma)$, we require that for every $\lambda \in \sigma(A)$,

$$ind_{\gamma}(\lambda) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-\lambda} = 1.$$

Then, for every $f \in H(\Omega)$ *, introduce*

$$f(A) := \frac{1}{2\pi i} \int_{\gamma} f(z) (z - A)^{-1} dz$$

Remark: By the Cauchy theorem, the choice of curve γ is non-essential, as long as the condition $ind_{\gamma}(\lambda) = 1$ for all $\lambda \in \sigma(A)$ is satisfied.

Theorem 28. Let X be a complex Banach space and $A \in L(X)$. Then,

1. Let $\Omega \subset \mathbb{C}$, so that $\sigma(A) \subset \Omega$. Then, for every $f, g \in H(\Omega)$,

$$(f+g)(A) = f(A) + g(A), (fg)(A) = f(A)g(A).$$

- 2. $p(z) = \sum_{k=0}^{N} a_k z^k$, then $p(A) = \sum_{k=0}^{n} a_k A^k$.
- 3. Spectral mapping theorem

$$\sigma(f(A)) = f(\sigma(A)).$$

4. $f: \Omega \rightarrow U, g: U \rightarrow \mathbb{C}, f, g$ holomorphic, then

$$g(f(A)) = (g \circ f)(A).$$

5. Let $\sigma(A) = \Sigma_0 \cup \Sigma_1$, where Σ_0 and Σ_1 are disjoint. Define the holomorphic functions $f_0|_{\Sigma_0} = 1$, $f_0|_{\Sigma_1} = 0$ and $f_1 = 1 - f_0$. Then, $P_0 := f_0(A)$, $P_1 = f_1(A)$ are projections, *i.e.* $P_j^2 = P_j$, j = 1, 2, $P_0P_1 = P_1P_0 = 0$ and they induce an A invariant decomposition $X = X_0 \oplus X_1$, $X_j = P_j(X)$, so that $A_j := (zf_j)(A) = AP_j : X_j \rightarrow X_j$ and $\sigma(A_j) = \Sigma_j$.

5.7 Adjoint operators

We now specialize on operators on a Hilbert space. It is largely a repetition of the previously studied material, but now in the case of Hilbert spaces with complex scalars. *One* subject, which is often subject of a lot of confusion, that I would like to discuss in detail, is adjoint versus dual operators.

For complex matrices, on \mathbb{R}^n , we have two operations of adjoints - A^t and A^* . Namely, if $A = (a_{ij})_{i,j=1}^n$,

$$A^{t} = (a_{ji})_{i,j=1}^{n}, A^{*} = (\overline{a_{ji}})_{i,j=1}^{n}.$$

Thus, for the duality operation, $\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$, we have $\langle Ax, y \rangle = \langle x, A^t y \rangle$, whereas for the dot product $(x, y) = \sum_{j=1}^{n} x_j \bar{y}_j$, we have $(Ax, y) = (x, A^* y)$. Similarly for Hilbert spaces, we have dual and adjoint operators. By Riesz representation theorem, one can define the duality operation in terms of the dot product, as follows

$$\langle x, y \rangle := (x, \bar{y})$$

Definition 24. Let $H, (\cdot, \cdot)$ be a complex Hilbert space. Recall its dot product is sesquilinear, *i.e.* $(a, \lambda b) = \overline{\lambda}(a, b)$. Then, given $A \in L(H)$, the adjoint operator is defined as the unique operator A^* , with

$$(Ax, y) = (x, A^* y).$$

From now on, whenever we talk about Hilbert spaces, A^* would mean the adjoint operator, rather than the dual one (I wish the standard notation were A^t for the dual, say in the previous chapter, but that is not the case!).

Next, here are some properties of the adjoint operator A^* .

Lemma 17. (see Lemma 5.9, page 226) Let H be a Hilbert space and $A \in L(H)$. Then,

- $A^* \in L(H)$ and $||A^*|| = ||A||$.
- $(AB)^* = B^*A^*$, $(\lambda A)^* = \bar{\lambda}A^*$.
- $A^{**} = A$.
- $Ker(A^*) = Im(A)^{\perp}, \overline{Im(A^*)} = Ker(A)^{\perp}.$

$$\sigma(A^*) = \overline{\sigma(A)}.$$

5.8 Normal operators

Definition 25. Let *H* be a complex Hilbert space and $A \in L(H)$. We say that

- A is normal, if $AA^* = A^*A$
- *A* is unitary, if $AA^* = A^*A = Id$ or $A^* = A^{-1}$.
- *A* is self-adjoint, if $A^* = A$.

Note that every self-adjoint and unitary is normal as well.

Examples:

- Matrices $A = (a_{ij})_{i,j=1}^n$ with $a_{ij} = \bar{a}_{ji}$ are self-adjoint operators on \mathbb{C}^n .
- $A: L^2[0,1] \to L^2[0,1], Ax(t) = f(t)x(t)$, where *f* is periodic continuous function. $M^*x(t) = \overline{f}(t)x(t)$. So, *M* is always normal and it is self-adjoint if and only if *f* is real-valued.
- The double infinite space $l^2 = \{x = \{x_n\}_{n=-\infty}^{\infty} : \|x\| = \left(\sum_{n=-\infty}^{\infty} |x_n|^2\right)^{\frac{1}{2}}$ and the shift operators $(Sx)(n) = x_{n+1}, (Rx)_n = x_{n-1}$. Note that $S^* = R, R^* = S$ and

$$SS^* = SR = Id = RS = S^*S.$$

Thus, *S*, *R* are unitary operators on l^2 .

Exercise 1. Let A be self-adjoint. Then A = 0 if and only if (Ax, x) = 0 for all x.

Proposition 14. Let *H* be a complex Hilbert space and $A \in L(H)$. Then,

- A is normal if and only if $||A^*x|| = ||Ax||$ for all $x \in H$.
- A is unitary, if $||Ax|| = ||A^*x|| = ||x||$.
- A is self-adjoint, if $(Ax, x) \in \mathbf{R}$ for all $x \in H$.

Theorem 29. (Spectrum of normal operators) Let H be a complex Hilbert space and $A \in L(H)$ be a normal operator. Then,

- 1. $||A^n|| = ||A||^n$ for every $n \in \mathbb{N}$.
- 2. $||A|| = \sup_{\lambda \in \sigma(A)} |\lambda|$.
- 3. $R\sigma(A^*) = R\sigma(A) = \emptyset, P\sigma(A^*) = \{\overline{\lambda} : \lambda \in P\sigma(A)\}.$
- 4. If A is unitary, then $\sigma(A) \subset \{z : |z| = 1\}$.

Proof. 1) is easy, see page 229. 2) follows from it by the spectral radius formula. Part 3) is also well done there. \Box

Lemma 18. Let $A = A^*$ on a Hilbert space and $\lambda \neq \mu \in P\sigma(A)$, with corresponding eigenvectors x, y, i.e. $Ax = \lambda x$, $Ay = \mu y$. Then, (x, y) = 0.

Theorem 30. (*Characterization of normal compact operators*) Let H be a complex Hilbert space and $A \in L(H)$ be a compact and normal operator. Then, there exists an orthonormal sequence $\{e_n\}_{n \in I}$ and $\lambda_i, i \in I$, so that $\lim_i \lambda_i = 0$ and

$$Ax = \sum_{i \in I} \lambda_i(x, e_i) e_i.$$

5.9 Spectrum of a self-adjoint operators

Theorem 31. Let *H* be a complex Hilbert space and $A \in L(H)$ be a self-adjoint operator. *Then,*

- 1. $\sigma(A) \subset \mathbf{R}$
- 2. $\sup \sigma(A) = \sup_{\|x\|=1} (Ax, x)$
- 3. $\inf \sigma(A) = \inf_{\|x\|=1} (Ax, x).$
- 4. $||A|| = \sup_{x:||x||=1} |(Ax, x)|.$

We would like to extend the functional calculus, in the case of a self-adjoint operator, to the algebra of continuous functions. The idea is to construct, for a fixed self-adjoint operator *A* on a Hilbert space *H*, an algebra homomorphism $\Phi_A : C(\sigma(A)) \to L(H)$, so that $\Phi_A(e_0) = A$, where $e_0(x) = x$.

5.10 Banach algebras

Definition 26. We say that a Banach space A is an unital Banach algebra, if in addition to the operations addition and multiplication by scalar, there are the operations product $(a, b) \rightarrow ab$ (and the unit element 1: a1 = 1a = a) and the star operation $a \rightarrow a^*$, with the properties

$$||ab|| \le ||a|| ||b||$$
, $(ab)^* = b^*a^*$, $\mathbb{1}^* = \mathbb{1}$, $(\lambda a)^* = \overline{\lambda}a^*$, $a^{**} = a$,

and the star property

$$||a^*a|| = ||a||^2.$$

A is called commutative, if ab = ba for all $a, b \in A$.

Examples:

- C(K) the continuous functions on a compact space K is commutative C^* algebra.
- *L*(*H*), with the regular * operation of adjoints. This is highly non-commutative Banach algebra.
- the space $l^1(\mathbb{Z}) = \{(x_n)_{n=-\infty}^{\infty} : ||x|| = \sum_{n=-\infty}^{\infty} |x_n|\}$, with the regular operations and a product operation given by z = x.y

$$z_k = \sum_{n=-\infty}^{\infty} x_{k-n} y_n.$$

is a commutative Banach algebra (Check!).

5.11 Continuous functional calculus for self-adjoint operators

The next lemma begins to build the homomorphism Φ_A , namely with the polynomials.

Definition 27. Let A, B be C^* algebras, and $\Phi : A \to B$. We say that Φ is C^* algebra homomorphism, if

$$\Phi(\mathbb{1}_A) = \mathbb{1}_B, \Phi(ab) = \Phi(a)\Phi(b), \Phi(a^*) = \Phi(a)^*.$$

We now start building such Φ on the algebra of continuous functions on $\sigma(A)$, $C(\sigma(A))$.

5.11.1 The map Φ_A on polynomials

Lemma 19. Let *H* be a complex Hilbert space, $A \in L(H)$. For every $p(z) = \sum_{k=0}^{n} a_k z^k$,

$$p(A) = \sum_{k=0}^{n} a_k A^k \in L(H)$$

has the properties

$$(p+q)(A) = p(A) + q(A), pq(A) = p(A)q(A), p(\sigma(A)) = \sigma(p(A)), ||p(A)|| = \sup_{\lambda \in \sigma(A)} |p(\lambda)|.$$

The next technical result is the (general) Stone-Weierstrass theorem.

Theorem 32. (Stone-Weierstrass) Let M be a Hausdorf compact space and $A \subset C(M)$ be a subalgebra, with the following properties

- $l. \ 1 \in A$
- 2. A separates points on M, i.e. for every $x, y \in M, x \neq y$, there exists $f \in A$, so that $f(x) \neq f(y)$.
- 3. A is closed under conjugation, i.e. if $f \in A$, then $\overline{f} \in A$.

Then, A is dense in C(M).

5.11.2 The construction of the map $\Phi_A : C(\Sigma) \to L(H)$

Theorem 33. Let *H* be a complex Hilbert space, $A \in L(H)$ be self-adjoint operator, i.e. $A = A^*$. Let $\Sigma = \sigma(A)$. Then, there exists a bounded, complex linear operator

$$\Phi_A: C(\Sigma) \to L(H), f \to f(A),$$

so that

- **Product** $\Phi_A(1) = Id$, fg(A) = f(A)g(A).
- **Conjugation** $\bar{f}(A) = f(A)^*$
- **Normalization** *If* $f(\lambda) = \lambda$ *, then* f(A) = A
- **Isometry** $||f(A)|| = \sup_{\lambda \in \Sigma} |f(\lambda)|$
- **Commutative** *If* AB = BA, *then* f(A)B = Bf(A) *for all* $f \in C(\Sigma)$.
- Image

$$\mathscr{A} := \{ f(A) : f \in C(\sigma) = \cap \{ \mathscr{B} : \mathscr{B} C^* algebra \subset L(H), A \in \mathscr{B} \}$$

- **Eigenvector** If $Ax = \lambda x$, for some $\lambda \in \mathbb{C}$ and $x \in H$, then $f(A)x = f(\lambda)x$.
- **Spectrum** f(A) *is normal for all* $f \in C(\Sigma)$, $\sigma(f(A)) = f(\sigma(A))$.
- **Composition** For $f \in C(\Sigma, \mathbb{R})$, $g \in C(f(\Sigma))$, $g \circ f(A) = g(f(A))$.

5.11.3 Square roots

Definition 28. We say that $A \in L(H)$: $A = A^*$ is positive semi-definite, if $\langle Ax, x \rangle \ge 0$. We denote it $A \ge 0$.

We have the following theorem.

Theorem 34. Let *H* be a complex Hilbert space and $A = A^*$. Let $f \in C(\sigma(A))$. Then,

- 1. $f(A) = f(A)^*$ if and only if $f(\sigma(A)) \subset \mathbf{R}$.
- 2. Assume $f(\sigma(A)) \subset \mathbf{R}$. Then, $f(A) \ge 0$ if and only if $f \ge 0$.
- 3. $A \ge 0$ if and only if there exists $B = B^*$, so that $A = B^2$.

Proof. The proof of 1) is easy, see p. 245. For 2), we have

$$\inf_{\|x\|=1} \langle f(A)x, x \rangle = \inf \sigma(f(A))) = \inf f(\sigma((A))) = \inf_{\lambda \in \sigma(A)} f(\lambda)$$

So, $f(\lambda) \ge 0$ if and only if $f(A) \ge 0$.

For 3), assume that $A \ge 0$. Then, $\sigma(A) \subset [0, \infty)$. Then, consider the function $f(\lambda) = \sqrt{\lambda}$, which is well-defined. Then, $B := f(A) \in L(H)$. Also, since $f^2(\lambda) = \lambda$,

$$B^2 = f^2(A) = A.$$

The reverse direction is easy, since if $A = B^2$,

$$\langle Ax, x \rangle = \langle B^2 x, x \rangle = \langle Bx, Bx \rangle = \|Bx\|^2 \ge 0.$$

11		1
		L
		L

A Finite dimensional subspaces of a Banach space

We show that every finite dimensional subspace of a (real) Banach space is isomorphic to \mathbf{R}^{n} .

Proposition 15. Let X be a real Banach space and $x_1, ..., x_n$ be a finite family of linearly independent vectors in X. Then, $X_n = \overline{span[x_1,...,x_n]}$ is a Banach space isomorphic to \mathbb{R}^n . In particular,

$$c\|\sum_{j=1}^{n}\lambda_{j}x_{j}\|_{X} \le \max_{1\le j\le n}|\lambda_{j}| \le C\|\sum_{j=1}^{n}\lambda_{j}x_{j}\|_{X}$$
(14)

B Dual families

Th next Proposition provides the existence of a finite dual family of vectors.

Proposition 16. (see Corollary 2.3.4) Let X be a real Banach space and $x_1, ..., x_n$ be a finite family of linearly independent vectors in X. Then, there exists a family of vectors $x_1^*, ..., x_n^* \in X^*$, so that

$$\langle x_j^*, x_i \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Remark: This is a generalization of a corollary of Hahn-Banach, which we use frequently. Namely, for every $x \in X$, there is $x^* \in X^* : ||x^*|| = 1$, so that $\langle x^*, x \rangle = ||x||$, see Corollary 6. Here, we have a family of vectors, whose norms are unknown, but keep in mind that it is usually the case that $\max_{1 \le j \le n} ||x_j^*||_{X^*}$ is growing with *n*.

C Finite dimensional subspaces/finite co-dimension subspace of a Banach space are complemented

The next result is almost an immediate consequence of Proposition 16, see also the construction of *K* in the proof of Lemma 11. **Proposition 17.** Let X be a Banach space and X_0 be a finite dimensional subspace of X. Then, X_0 is complemented. That is, there exists a closed linear subspace $Y \subset X$, so that

$$X = X_0 \oplus Y$$
.

Equivalently, there is a projection operator $P: X \to X_0$, i.e. an $P^2 = P$. Note that Q = I - P also satisfies $Q^2 = Q$ and then, Y = Im(Q).

Let Y be a finite co-dimension subspace of X, i.e. $dim(X/Y) < \infty$. Then, Y is complemented.

D Small perturbations of invertible operators are still invertible

Lemma 20. Let $A : X \to Y$ be bounded and invertible linear operator. Then, there exists $\epsilon = \epsilon(A)$ so that for each $B : X \to Y$, $||B|| < \epsilon$, we have that A + B is also invertible.

Remark: In fact, one may take $\epsilon = \frac{1}{\|A^{-1}\|}$.

References

[1] T. Bühler and D. Salamon, Functional Analysis (Graduate Studies in Mathematics), American Mathematical Society, **191** Providence, RI, 2018.