MATH 961: PROJECT III DUE: NOV. 5TH, 2020

- (1) Prove that
 - If C is symmetric on a complex Hilbert space H, then Ker(C+i) = {0}.
 Hint: ⟨Cz + iz, z⟩ = 0.
 - If $A \subset C$ (i.e. C is an extension of A) are symmetric operators, with Ran(A+i) = Ran(C+i), show that C = A.
 - Show that if A is symmetric, with Ran(A+i) = H, but $Ran(A-i) \neq H$, then A does not have any self-adjoint extensions.
- (2) Consider $T = i\partial_x$ on $L^2(0, \infty)$, with $D(T) = C_0^{\infty}([0, \infty))$, the functions with compact support away from the origin. Show that T is symmetric, compute T^* .
- (3) Show that the operators

$$S(t)f(x) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{4t}} f(x-y) dy$$

representing the solution of the heat equation $u_t = u_{xx}, x \in \mathbb{R}^1$, u(t, x) with initial data f(x) for a C_0 semi-group on $L^p(\mathbb{R}^1), 1 \leq p < \infty$.

More specifically, check the property $\lim_{t\to 0+} ||S(t)f - f||_{L^p} = 0$ for each fixed $f \in L^p$. Why this fails at $p = \infty$? Show that this is a semigroup of contractions in the same spaces.

(4) Let *H* be a Hilbert space, with an orthonormal basis $\{e_n\}_{n\in\mathbb{N}}$. Let $\{a_n\}\subset\mathbb{C}$. Let

$$Ax := \sum_{n} a_n \langle x, e_n \rangle e_n, D(A) = \{ x \in H : \sum_{n} |a_n|^2 | \langle x, e_n \rangle |^2 < \infty.$$

Show that A generates a C_0 semigroup if and only if $\sup_n \Re a_n < \infty$. How does the semi-group $T(t) = e^{tA}$ look like? Compute its growth bound $\omega = \lim_{t\to\infty} \frac{\ln ||T(t)||}{t}$.

(5) For 1 , define the space

$$W_p^1(0,1) = \{ f \in C(0,1) \cap L^p(0,1) : \exists g \in L^p(0,1) : f(t) - f(s) = \int_s^t g(\tau) d\tau \}$$

with norm $||f||_{W_p^1} := ||g||_{L^p(0,1)} + ||f||_{L^p(0,1)}$. Informally g = f'. Show that

$$T(t)f(s) = \begin{cases} f(s+t) & s+t < 1\\ 0 & s+t \ge 1 \end{cases}$$

is a C_0 semi-group on $L^p(0,1)$. Show that its generator is given by Au = u', where $D(A) = \{u \in W_p^1(0,1) : u(1) = 0\}.$