PROJECT V - MATH 800 DUE MAY 10TH, 2021

(1) (Uniqueness of analytic extensions)

Let $f: \Omega \rightarrow \mathbf{C}$ be a a holomorphic function and Ω be a domain (i.e. open and connected set). Assume that $\Omega_{1}: \Omega \subset \Omega_{1}$ is a larger domain and $g: \Omega_{1} \rightarrow \mathbf{C}$ is an analytic extension of f. Show that g is unique, i.e. every other extension should coincide with g on Ω_{1}.
(2) Let f be a holomorphic function on a domain Ω. Let Ω be symmetric with respect to the real axes (i.e. $z \in \Omega$ implies $\bar{z} \in \Omega$). Assume that at some point $z_{0} \in \Omega$, z_{0} real, all derivatives of f are real. That is, $f^{(k)}\left(z_{0}\right) \in \mathbf{R}$. Show that for all $z \in \Omega$, we have the functional identity

$$
\overline{f(z)}=f(\bar{z})
$$

 $\overline{f(\bar{z})}$. We have used that fact for the Riemann zeta function - we have showed the identity only for $\Re z>1$ and then, we have it everywhere.
(3) Prove that the function

$$
f(z)=\int_{0}^{\infty} \frac{e^{-z t}}{1+t^{2}} d t
$$

is holomorphic in $\Re z>0$ and is continuous in $\Re z \geq 0$.
Hint: The continuity at $\Re z=0$ does not follow from a general result and it needs to be done explicitly.
(4) Show that

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{\sqrt{n}}\right) e^{\left(a \frac{z}{\sqrt{n}}+b \frac{z^{2}}{n}\right)}
$$

for appropriately chosen a, b, defines an entire function, with zeros exactly at $\{\sqrt{n}, n=1,2, \ldots\}$.
Hint: Use the approach of Lemma 8.2.1, then apply Theorem 8.1.7.
(5) Show that the Riemann zeta function $\zeta(z)$ has meromorphic extension for $\Re z>-1$, with a simple pole at $z=1$.
Hint: The basic idea of analytic continuation is: you need a formula in $\Re z>1$, which involves $\zeta(z)$, so that every other function involved in it is well-defined in $\Re z>-1$. Use the idea in Lemma 16.2.1. More precisely, start by showing the identity, for $z: \Re z>1$,

$$
\zeta(z)-\frac{1}{z-1}-1=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(\frac{1}{n^{z}}-\frac{1}{x^{z}}-\frac{z}{x^{z+1}}\right) d x
$$

Then, show that the sum on the right defines a holomorphic function in $\Re z>$ -1 . One can use this procedure to extend $\zeta(z)$ to $\Re z>-k$, for every k. What identity does one need to make the extension to say $\Re z>-2$?

