PROJECT IV - MATH 800
 DUE APRIL 22, 2021

(1) Problem 6/page 175.

Hint: For $z \in D(0,1)$, take any smooth curve connecting 0 to z, say γ_{z}. Define

$$
g(z):=\int_{\gamma_{z}} \frac{f^{\prime}(\xi)}{f(\xi)} d \xi
$$

Show that $g(z)$ is independent on γ_{z}, just on z. Then, compute $g^{\prime}(z)$, by computing $\lim _{\delta \rightarrow 0} \frac{g(z+\delta)-g(z)}{\delta}$ on appropriate $\gamma_{z+\delta}$.
(2) Problem 8/page 175.
(3) Suppose f is holomorphic in $D(0,1)$ and continuous in $\overline{D(0,1)}$, so that $|f(z)|<$ 1 for $|z|=1$. Find the number of solutions inside $D(0,1)$ of the equation $f(z)=z^{n}$ for any integer $n \geq 1$.
Hint: Rouche's theorem
Let $f: D(0,2) \rightarrow C$ be holomorphic function. Let $f(0)=0$ and 0 is a simple zero, i.e. $f^{\prime}(0) \neq 0$. Also, $f(z) \neq 0$ for any $z \in D(0,1) \backslash\{0\}$. Let $\rho=\min \{|f(z)|:|z|=1\}>0$.
(4) Prove that for every $\omega \in D(0, \rho)$, there is an unique $z=z(\omega) \in D(0,1)$, so that $f(z(\omega))=\omega$.
Hint: Consider

$$
k(\omega)=\frac{1}{2 \pi i} \int_{|z|=1} \frac{f^{\prime}(z)}{f(z)-\omega} d z, \quad \omega \in D(0, \rho) .
$$

integrated counterclockwise.
(5) Show that the map $\omega \rightarrow z(\omega)$ is holomorphic on $D(0, \rho)$.

Hint: Show that

$$
z(\omega)=\frac{1}{2 \pi i} \int_{|z|=1} \frac{z f^{\prime}(z)}{f(z)-\omega} d z, \quad \omega \in D(0, \rho) .
$$

and prove holomorphicity directly in this formula.
Let f be holomorphic non-constant function in a neighborhood of the unit disc $D(0,1)$. Assume that $|f(z)|=1$, for $|z|=1$.
(6) Prove that $f(z)=0$ has a solution inside $D(0,1)$.

Hint: Use contradiction argument. Apply the maximum modulus principle to both f and $1 / f$.
(7) Prove that the image of f contains $D(0,1)$.

Hint: Consider

$$
k(\omega)=\frac{1}{2 \pi i} \int_{|\xi|=1} \frac{f^{\prime}(\xi)}{f(\xi)-\omega} d \xi, \quad \omega \in D(0,1)
$$

and use the result from Problem (6).

