PROJECT II - MATH 800 DUE MARCH 25TH, 2021

(1) Problem 4/p. 94.
(2) Problem 11 a), d), /p. 95
(3) Problem 17/p. 96
(4) Let f be a holomorphic function on a domain D. Let $z_{0} \in D: f\left(z_{0}\right)=0$. Prove that

$$
g(z):= \begin{cases}\frac{f(z)}{\left(z-z_{0}\right)} & z \neq z_{0} \\ f^{\prime}\left(z_{0}\right) & z=z_{0}\end{cases}
$$

is holomorphic in D.
Note that as a consequence, one can always write $f(z)=\left(z-z_{0}\right) g(z)$ with $g \in H(D)$, whenever $f\left(z_{0}\right)=0$.
Hint: One way to go is to use Morera's theorem. You can also use a theorem like Theorem 2.3.3. For the Morera'a approach, write

$$
\int_{\gamma} g(z) d z=\int_{\gamma} g(z) d z+\int_{\Gamma_{\epsilon}} g(z) d z-\int_{\Gamma_{\epsilon}} g(z) d z
$$

where $\Gamma_{\epsilon}=\left\{z:\left|z-z_{0}\right|=\epsilon\right\}$ traced clockwise. By Cauchy theorem, show that

$$
\int_{\gamma} g(z) d z+\int_{\Gamma_{\epsilon}} g(z) d z=\int_{\gamma \cup \Gamma_{\epsilon}} g(z) d z=0
$$

and then show that $\lim _{\epsilon \rightarrow 0} \int_{\Gamma_{\epsilon}} g(z) d z=0$.
(5) Problem 24/page 97 - Prove that is correct. In fact, show that the radius of convergence is $r^{\prime}=\min (r, 1)$.
(6) Problem 27/page 97.

Hint: For the case when g has zeros - show first that the function $\frac{f(z)}{g(z)}$ is still well-defined and analytic at the zeros of g. For example, you can argue that it has removable singularities there.
(7) Problem 30/page 98,

Hint: For the polynomial estimate, show that it is impossible by providing a counterexample (say a power series which converges on \mathbb{C}, so that $f^{(k)}(0)$ grows faster than any polynomial of k).
(8) $37 /$ page 99
(9) 41/page 100 .
(10) $42 /$ page 100.

