PROJECT I - MATH 800
 SPRING 2021
 DUE ON FEBRUARY, 25

(1) Problem 19/page 23;
(2) Problem 29 a), b)/page 24
(3) Problem 34/page 25;
(4) Problem 47/page 26;

Hint: For $f=u+i v$, write $\ln (|f|)=\frac{1}{2} \ln \left(u^{2}+v^{2}\right)$. Take derivatives and use the Cauchy-Riemann for u, v.
(5) Problem 52/page 27

Hint: To show the non-existence of a holomorphic f, so that $f: \frac{\partial f}{\partial z}(z)=\frac{1}{z}$ argue by contradiction, by considering the path integral

$$
\int_{|z|=1} \frac{\partial f}{\partial z} d z=\int_{|z|=1} \frac{1}{z} d z
$$

(6) Prove that if a holomorphic function F on a connected domain satisfies $F^{\prime}(z)=0$, then $F=$ const .
Hint: We have done similar result in class for real-valued C^{1} functions.
(7) Let $\Omega \subset \mathbb{C}$ be an open set and $F \in C^{2}(\Omega) \cap H(\Omega)$. Show that $\frac{\partial F}{\partial z} \in H(\Omega)$

Hint: Cauchy-Riemann
(8) Problem 55/page 27 without the counterexample.

Hint: You have that on the connected intersection $U_{1} \cap U_{2}$, there is $F_{1}^{\prime}=F_{2}^{\prime}$.
Use the result in Exercise 6.
(9) Problem 37/page 66;
(10) Problem 42/page 66;

Hint:

The hint to Exercise 3 is misleading. Instead,

- Show that the function

$$
F(z):=\int_{\gamma_{z}} f(\xi) d \xi
$$

is defined correctly, when γ is any smooth curve connecting 0 to z. That should use the condition that $\oint_{\sigma} f(\xi) d \xi=0$ for any closed curve σ.

- Show that the the function $F(z)=\int_{\gamma_{z}} f(\xi) d \xi=\int_{\gamma_{z}} f(\xi) d x+i \int_{\gamma_{z}} f(\xi) d y$ satisfy $F_{x}=f, F_{y}=i f$, which imply the Cauchy-Riemann for F. Here, you need to take the curves γ_{z} appropriately, so that you can produce the difference quotient for F_{x}, F_{y} like we did in the various proofs for the solvability of the system $u_{x}=f, u_{y}=g$.

