PROJECT I - MATH 800 SPRING 2021 DUE ON FEBRUARY, 25

- (1) Problem 19/page 23;
- (2) Problem 29 a), b)/page 24
- (3) Problem 34/page 25;
- (4) Problem 47/page 26; **Hint:** For f = u + iv, write $\ln(|f|) = \frac{1}{2}\ln(u^2 + v^2)$. Take derivatives and use the Cauchy-Riemann for u, v.
- (5) Problem 52/page 27

Hint: To show the non-existence of a holomorphic f, so that $f: \frac{\partial f}{\partial z}(z) = \frac{1}{z}$ argue by contradiction, by considering the path integral

$$\int_{|z|=1} \frac{\partial f}{\partial z} dz = \int_{|z|=1} \frac{1}{z} dz$$

(6) Prove that if a holomorphic function F on a connected domain satisfies F'(z) = 0, then F = const.

Hint: We have done similar result in class for real-valued C^1 functions.

- (7) Let $\Omega \subset \mathbb{C}$ be an open set and $F \in C^2(\Omega) \cap H(\Omega)$. Show that $\frac{\partial F}{\partial z} \in H(\Omega)$ **Hint:** Cauchy-Riemann
- (8) Problem 55/page 27 without the counterexample. **Hint:** You have that on the connected intersection $U_1 \cap U_2$, there is $F'_1 = F'_2$. Use the result in Exercise 6.
- (9) Problem 37/page 66;
- (10) Problem 42/page 66;

Hint:

The hint to Exercise 3 is misleading. Instead,

• Show that the function

$$F(z) := \int_{\gamma_z} f(\xi) d\xi$$

is defined correctly, when γ is any smooth curve connecting 0 to z. That should use the condition that $\oint_{\sigma} f(\xi) d\xi = 0$ for any closed curve σ .

• Show that the function $F(z) = \int_{\gamma_z} f(\xi) d\xi = \int_{\gamma_z} f(\xi) dx + i \int_{\gamma_z} f(\xi) dy$ satisfy $F_x = f, F_y = if$, which imply the Cauchy-Riemann for F. Here, you need to take the curves γ_z appropriately, so that you can produce the difference quotient for F_x, F_y like we did in the various proofs for the solvability of the system $u_x = f, u_y = g$.